PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Microstructural evaluation of the high-frequency induction welded joints of low carbon steel pipes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents the results of research on the structure of welded joints in the area of heat affected zone (HAZ). Based on precisely performed metallographic tests, the contribution of individual structural components in the area of welds of pipes welded with the induction method was assessed. The volume fraction of individual structural components in various areas of the heat affected zone, the size of the grain formed in the welding process, as well as its shape coefficients were determined. On the basis of metallographic observations, an attempt was made to describe the course of the pressure induction welding process, taking into account the structural changes, phase changes and the recovering and recrystallization processes taking place in this process.
Rocznik
Strony
19--33
Opis fizyczny
Bibliogr. 30 poz., tab., fot., il., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, 30-059 Cracow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, 30-059 Cracow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, 30-059 Cracow, Poland
Bibliografia
  • 1. Sajek A., Welding Thermal Cycles of Joints Made of S1100QL Steel by Saw and Hybrid Plasma-Mag Processes, Adv. Mater. Sci. 20 (2020) 75–86.
  • 2. Ziewiec A., Tasak E., Witkowska M., Ziewiec K., Microstructure and Properties of Welds of Semi-Austenitic Precipitation Hardening Stainlees Steel after Heat Treatment, Arch. Metall. Mater. 58 (2013) 613–617.
  • 3. Janiczak R., Pańcikiewicz K.,, Laser welding of austenitic ferrofluid container for the KRAKsat satellite, Weld. World. 65 (2021) 1347–1357.
  • 4. Kocurek R., Adamiec J., The Repair Welding Technology of Casts Magnesium Alloy QE22, Solid State Phenom. 212 (2013) 81–86.
  • 5. Górka J., Przybyła M., Szmul M., Chudzio A., Ładak D., Orbital TIG Welding of Titanium Tubes with Perforated Bottom Made of Titanium-Clad Steel, Adv. Mater. Sci. 19 (2019) 55–64.
  • 6. Adamiec J., Pfeifer T., Rykała J., CMT and MIG-Pulse Robotized Welding of Thin-Walled Elements Made of 6xxx and 2xxx Series Aluminium Alloys, Solid State Phenom. 191 (2012) 45–56.
  • 7. De Backer M., Van Minnebruggen K., De Waele W., The influence of material anisotropy and spiral welding on tensile strain capacity of spiral welded pipes, Int. J. Sustain. Constr. Des. 6 (2015) 9.
  • 8. Simion P., Dia V., Istrate B., Hrituleac G., Hrituleac I., Munteanu C., Study of fatigue behavior of longitudinal welded pipes, IOP Conf. Ser. Mater. Sci. Eng. 145 (2016).
  • 9. EN ISO 3183: Petroleum and natural gas industries - Steel pipe for pipeline transportation systems, 2020.
  • 10. Liu C., Bhole S.D., Challenges and developments in pipeline weldability and mechanical properties, Sci. Technol. Weld. Join. 18 (2013) 169–181.
  • 11. Simion P., Dia V., Istrate B., Munteanu C., Controlling and Monitoring of Welding Parameters for Micro-Alloyed Steel Pipes Produced by High Frequency Electric Welding, Adv. Mater. Res. 1036 (2014) 464–469.
  • 12. Chen Z., Chen X., Zhou T., Microstructure and Mechanical Properties of J55ERW Steel Pipe Processed by On-Line Spray Water Cooling, Metals (Basel). 7 (2017) 150.
  • 13. Sabzi M., Kianpour-Barjoie A., Ghobeiti-Hasab M., Mersagh Dezfuli S., Effect of High-Frequency Electric Resistance Welding (HF-ERW) Parameters on Metallurgical Transformations and Tensile Properties of API X52 Microalloy Steel Welding Joint, Arch. Metall. Mater. 63 (2018) 1693–1699.
  • 14. Merchant V.E., Laser welding in the pipeline industry, in: D. Belforte (Ed.), Ind. Laser Handb., Springer-Verlag New York Inc., 1992, 91–88.
  • 15. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding, Arch. Civ. Mech. Eng. 16 (2016) 777–783.
  • 16. Pańcikiewicz K., Structure and Properties of Welded Joints of 7CrMoVTiB10-10 (T24) Steel, Adv. Mater. Sci. 18 (2018) 37–47.
  • 17. Ziewiec A., Tasak E., Zielińska-Lipiec A., Ziewiec K., Kowalska J., The influence of rapid solidification on the microstructure of the 17Cr–9Ni–3Mo precipitation hardened steel, J. Alloys Compd. 615 (2014) 627–S632.
  • 18. Rakoczy Ł., Grudzień M., Zielińska-Lipiec A., Contribution of Microstructural Constituents on Hot Cracking of Mar-M247 Nickel Based Superalloy, Arch. Metall. Mater. 63 (2018) 181–189.
  • 19. Pańcikiewicz K., Radomski W., Lack of tightness analysis of concealed welded radiators, Eng. Fail. Anal. 114 (2020) 104579.
  • 20. Güngör Ö.E., Yan P., Thibaux P., Liebeherr M., Bhadeshia H.K.D.H., Quidort D., Investigations Into the Microstructure–Toughness Relation in High Frequency Induction Welded Pipes, 8th Int. Pipeline Conf. Vol. 2, ASMEDC (2010) 577–585.
  • 21. Yan P., High frequency induction welding & post-welding heat treatment of steel pipes, University of Cambridge, 2011.
  • 22. Yan P., Güngör Ö.E., Thibaux P., Liebeherr M., Bhadeshia H.K.D.H., Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment, Mater. Sci. Eng. A. 528 (2011) 8492–8499.
  • 23. Śloderbach Z., Pająk J., Determination of Ranges of Components of Heat Affected Zone Including Changes of Structure, Arch. Metall. Mater. 60 (2015) 2607–2612.
  • 24. Udhayakumar T., Mani E., Effect of HF Welding Process Parameters and Post Heat Treatment in the Development of Micro Alloyed HSLA Steel Tubes for Torsional Applications, J. Mater. Sci. Eng. 06 (2017).
  • 25. Zhang W., Zhao G., Fu Q., Study on the effects and mechanisms of induction heat treatment cycles on toughness of high frequency welded pipe welds, Mater. Sci. Eng. A. 736 (2018) 276–287.
  • 26. de Santana I.J., Paulo B., Modenesi P.J., High frequency induction welding simulating on ferritic stainless steels, J. Mater. Process. Technol. 179 (2006) 225–230.
  • 27. Matusiewicz P., Czarski A., Adrian H., Estimation of materials microstructure parameters using computer program SigmaScan Pro, Metall. Foundry Eng. 33 (2007).
  • 28. Wojnar L., Kurzydłowski K., Szala J., Metallography and Microstructures, in: G.F. Vander Voort (Ed.), ASM Handbook, Vol. 9. Metallogr. Microstruct., ASM Int, 2004.
  • 29. Szala J., Teoretyczne i praktyczne aspekty ilościowego opisu struktury stali ferrytyczno-perlitycznych, Hut. - Wiadomości Hut. 1 (2018) 22–28.
  • 30. Krawczyk J., Adrian H., The kinetics of austenite grain growth in steel for wind power plant shafts, Arch. Metall. Mater. 55 (2010) 91–99.
Uwagi
The work was performed under the project No. 16.16.110.663. The authors of the work thank for graduate students Mateusz Mądry and Tomasz Kaleta for preparing microscopic documentation and participating in the preparation of some metallographic analyzes.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-010c106a-4a0f-4297-9697-d9b86f1e5cb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.