PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A short note on the natural and anthropogenic variations in the water storage changes at Visakhapatnam, Andhra Pradesh, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We analyze the periodic and stochastic/random dynamics in the water storage changes at Visakhapatnam, Andhra Pradesh, India. We used time-variable gravity data in terms of Equivalent Water Thickness (EWT) measured from Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On satellite missions for the period 2002 to 2021 along with average rainfall data to assess the natural and anthropogenic impacts on water storage changes. We employ Wavelet Spectrum and Singular Spectrum Analysis (SSA) methods to analyze the non-stationary variation of spectral power and principal components. The water storage in the study area shows a significant positive trend with a peak correlation of 0.52 with the rainfall data at a lag of 3 months. The first, second, third, fourth, and fifth principal components depicting the monotonic trend and oscillations together contribute 69.48% to the total water storage changes. The wavelet spectrum of the SSA reconstructed signal from the first four principal components revealed non-stationary annual and 1.3 to 8 years periodicities associated with natural solar and El-Nino Southern Oscillations (ENSO) respectively. The phase plot of the residual signal of ~ 30% variance suggests the random dynamics. Thus the study suggests: (i) an increasing groundwater trend in the study area, (ii) nearly 70% of the water storage changes are linked with natural solar and ENSO variations, and (iii) 30% of water storage changes are with random dynamics possibly linked with anthropogenic activities and catastrophic climatic episodes of shorter duration at Visakhapatnam, Andhra Pradesh, India.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1847--1854
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Andhra University, Visakhapatnam, Andhra Pradesh, India
  • CSIR-NGRI, Hyderabad, Telangana, India
  • Andhra University, Visakhapatnam, Andhra Pradesh, India
Bibliografia
  • 1. Ahmed M, Sultan M, Wahr J, Yan E (2014) The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth Sci Rev 136:289–300. https://doi.org/10.1016/j.earscirev.2014.05.009
  • 2. Alexandrov MD, Schmid B, Turner DD, Cairns B, Oinas V, Lacis AA, Gutman SI, Westwater ER, Smirnov A, Eilers J (2009) Columnar water vapor retrievals from multifilter rotating shadowband radiometer data. J Geophys Res 114:D02306. https://doi.org/10.1029/2008JD010543
  • 3. Chanu CS, Munagapati H, Tiwari VM, Kumar A, Elango L (2020) Use of GRACE time-series data for estimating groundwater storage at small scale. J Earth Syst Sci 129(1):1–19. https://doi.org/10.1007/s12040-020-01465-2
  • 4. Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon BR (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59:143–156
  • 5. Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4(11):945–948. https://doi.org/10.1038/nclimate2425
  • 6. Galloway DL, Burbey TJ (2011) Regional land subsidence accompanying groundwater extraction. Hydrogeol J 19(8):1459–1486. https://doi.org/10.1007/s10040-011-0775-5
  • 7. Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34913-3 (ISBN:978-3-642-34913-3)
  • 8. Hora T, Srinivasan V, Basu NB (2019) The groundwater recovery paradox in South India. Geophys Res Lett 46(16):9602–9611. https://doi.org/10.1029/2019GL083525
  • 9. Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res. https://doi.org/10.1029/2011WR011453
  • 10. Munagapati H, Yadav R, Tiwari VM (2018) Identifying water storage variation in Krishna Basin, India from in situ and satellite based hydrological data. J Geol Soc India 92(5):607–615. https://doi.org/10.1007/s12594-018-1074-8
  • 11. Padmavathi B, Rekapalli R, Tiwari RK (2019) Role of natural and anthropogenic loadings on Indian temperature trends. Pure Appl Geophys 176(11):5125–5140. https://doi.org/10.1007/s00024-019-02247-8
  • 12. Ramillien G, Frappart F, Cazenave A, Güntner A (2005) Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci Lett 235(1–2):283–301
  • 13. Rekapalli R, Tiwari RK (2014) Windowed SSA (singular spectral analysis) for geophysical time series analysis. J Geol Resour Eng 1:167–173. https://doi.org/10.17265/2328-2193/2014.03.004
  • 14. Rekapalli R, Tiwari RK (2015) A short note on the application of singular spectrum analysis for geophysical data processing. J Indian Geophys Union 19(1):77–85. https://doi.org/10.1007/978-3-030-19304-1
  • 15. Rekapalli R, Tiwari RK (2020) Breaks in linear trends or parts of cycles? Pure Appl Geophys 177(11):5469–5474
  • 16. Rodell M, Famiglietti JS (2001) An analysis of terrestrial water storage variations in Illinois with implications for the gravity recovery and climate experiment (GRACE). Water Resour Res 37(5):1327–1339. https://doi.org/10.1029/2000WR900306
  • 17. Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15(1):159–166. https://doi.org/10.1007/s10040-006-0103-7
  • 18. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. https://doi.org/10.1038/nature08238
  • 19. Rodell M, Famiglietti JS, Scanlon BR (2010) Realizing the potential of satellite gravimetry for hydrology: second GRACE hydrology workshop; Austin, Texas, 4 November 2009. Eos Trans Am Geophys Union. https://doi.org/10.1029/2010EO100008
  • 20. Serita A, Hattori K, Yoshino C, Hayakawa M, Isezaki N (2005) Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes. Nat Hazard 5(5):685–689. https://doi.org/10.5194/nhess-5-685-2005
  • 21. Shin SI, Sardeshmukh PD (2011) Critical influence of the pattern of tropical ocean warming on remote climate trends. Clim Dyn 36(7–8):1577–1591. https://doi.org/10.1007/s00382-009-0732-3
  • 22. Suryanarayana C, Mahammood V (2019) Groundwater-level assessment and prediction using realistic pumping and recharge rates for semi-arid coastal regions: a case study of Visakhapatnam city India. Hydrogeol J 27(1):249–272. https://doi.org/10.1007/s10040-018-1851-x
  • 23. Tabari H, Nikbakht J, Some’e BS (2012) Investigation of groundwater level fluctuations in the north of Iran. Environ Earth Sci 66(1):231–243. https://doi.org/10.1007/s12665-011-1229-z
  • 24. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305:503–505
  • 25. Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L et al (2013) Ground water and climate change. Nat Clim Change 3(4):322–329
  • 26. Tiwari RK (2005) Geospectroscopy. Capital Publishing Company
  • 27. Tiwari RK, Rajesh R (2014) Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China. Geophys Res Lett 41(9):3103–3109. https://doi.org/10.1002/2014GL060204
  • 28. Tiwari RK, Rekapalli R (2020) Singular spectrum analysis with MATLAB®. Modern singular spectral-based denoising and filtering techniques for 2D and 3D reflection seismic data. Springer, Cham, pp 125–138
  • 29. Tiwari RK, Rekapalli R (2021) Advances in geo-time series modelling. J Geol Soc India 97:1313–1322. https://doi.org/10.1007/s12594-021-1862-4
  • 30. Tiwari VM, Wahr J (2011) Grace estimates of water mass loss from northern Indian region. J Geol Soc India 78(3):279–280. https://doi.org/10.1007/s12594-011-0081-9
  • 31. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36(18):184–201. https://doi.org/10.1029/2009GL039401
  • 32. Tiwari VM, Wahr JM, Swenson S, Singh B (2011) Land water storage variation over Southern India from space gravimetry. Curr Sci 101:536–540
  • 33. Tiwari RK, Rajesh R, Padmavathi B (2015) Evidence for nonlinear coupling of solar and ENSO signals in Indian temperatures during the past century. Pure Appl Geophys 172(2):531–543
  • 34. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79(1):61–78
  • 35. Trenberth KE (2011) Changes in precipitation with climate change. Climate Res 47(1–2):123–138. https://doi.org/10.3354/cr00953
  • 36. Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett. https://doi.org/10.1029/2005GL022760
  • 37. Xiao M, Koppa A, Mekonnen Z, Pagán BR, Zhan S, Cao Q (2017) How much groundwater did California’s central valley lose during the 2012–2016 drought? Geophys Res Lett 44:4872–4879. https://doi.org/10.1002/2017GL073333
  • 38. Yeh PJF, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the gravity recovery and climate experiment (GRACE). Water Resour Res. https://doi.org/10.1029/2006WR005374
  • 39. Yin W, Han SC, Zheng W, Yeo IY, Hu L, Tangdamrongsub N, Ghobadi-Far K (2020) Improved water storage estimates within the North China Plain by assimilating GRACE data into the CABLE model. J Hydrol 590:125348. https://doi.org/10.1016/j.jhydrol.2020.125348
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0109b8b0-10af-424e-8ece-1592f7930fa6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.