PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Tin Addition on the Degradability and Corrosion Properties of a New Zn-1.0 wt.% Mg Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, to investigate effects of tin addition on the microstructures and corrosion properties, Zn-1Mg-xSn (x = 1.0, 2.0 and 5.0 wt.%) ternary zinc alloys were prepared. The experimental results indicated that the Zn-1Mg-2.0 wt.% Sn alloy has the better mechanical properties compared with pure zinc and Zn-1Mg alloy. The tensile strength of the alloy material is 173.2±3.7 MPa, the yield strength is 120.7±2.4 MPa, the elongation is 5.64±0.08% and the hardness is 76.9±0.8 HV. The average degradation rate of the alloys immersion in SBF solution for 60 days is 0.16±0.03 mm/year, and the Zn-1Mg-2.0 wt.% Sn alloy hemolysis rate is only 0.81±0.02%. It is confirmed that the addition of tin is effective to improve the mechanical properties and degradation of Zn-1Mg alloy. It may be a candidate of the clinical application requirements of the degradable implant materials in orthopedics.
Twórcy
  • Materials Science and Engineering, Guilin University of Technology, China
autor
  • Guilin University of Technology, College of Materials Science and Engineering / Dental Clinic and Experimental Center of Medical Sciences, 12 Jianganroad, Guilin, 541004, Guilin, China
autor
  • Guilin University of Technology, College of Materials Science and Engineering / Dental Clinic and Experimental Center of Medical Sciences, 12 Jianganroad, Guilin, 541004, Guilin, China
  • Guilin Medical University, Experimental Center of Medical Sciences, 26, Huanchen Road Guilin, 541002, Guilin, China
Bibliografia
  • [1] E. Gómez-Barrena, P. Rosset, D. Lozano, J. Stanovici, C. Ermthaller, F. Gerbhard, Bone. 70, 93-101 (2015).
  • [2] W. Xu, F. Yu, L. Yang, B. Zhang, B. Hou, Y. Li, Mater. Sci. Eng. C-Mater. Biol. Appl. 92, 11-9 (2018).
  • [3] D.P. Zhao, Y.K. Chen, K.K. Chang, T. Ebel, F. Pyczak, Trans. Nonferrous Met. Soc. China. 28, 1342-50 (2018).
  • [4] A. Bekmurzayeva, W.J. Duncanson, H.S. Azevedo, D. Kanayeva, Mater. Sci. Eng. C-Mater. Biol. Appl. 93, 1073-89 (2018).
  • [5] K. Yamanaka, M. Mori, I. Kartika, M.S. Anwar, K. Kuramoto, S. Sato, A. Chiba, Corrosion Sci. 148, 178-87 (2019).
  • [6] Y. Zheng, Y. Wu, Acta Metall. Sin. 53, 257-97 (2017).
  • [7] M. Ridzwan, S. Solehuddin, A.Y. Hassan, A.A. Shokri, M. Ibrahim, J. Med. Sci. 7, 460-7 (2007).
  • [8] H. Li, Y. Zheng, L. Qin, Prog. Nat. Sci. 24, 414-22 (2014).
  • [9] Y. Zhang, Y. Yan, X. Xu, Y. Lu, L. Chen, D. Li, Y. Dai, Y. Kang, K. Yu, Mater. Sci. Eng. C-Mater. Biol. Appl. 99, 1021-34 (2019).
  • [10] W.R. Zhou, Y.F. Zheng, M.A. Leeflang, J. Zhou, Acta Biomater. 9, 8488-98 (2013).
  • [11] Y.F. Zheng, X.N. Gu, F. Witte, Mater. Sci. Eng. R-Rep. 77, 1-34 (2014).
  • [12] Q. Chen, G.A. Thouas, Mater. Sci. Eng. R-Rep. 87, 1-57 (2015).
  • [13] H.M. Ledbetter, J. Phys. Chem. Ref. Data. 6, 1181-203 (1977).
  • [14] S.I. Katsumata, R. Katsumata-Tsuboi, M. Uehara, K. Suzuki, J. Nutr. 139, 238-43 (2009).
  • [15] J. Aaseth, G. Boivin, O. Andersen, J. Trace Elem. Med. Biol. 26, 149-52 (2012).
  • [16] R. Zhang, P. Lee, V.C. Lui, Y. Chen, X. Liu, C.N. Lok, M. To, K.W. Yeung, K.K. Wong, Nanomedicine. 11, 1949-59 (2015).
  • [17] Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, G. Yuan, Mater. Des. 117, 84-94 (2017).
  • [18] H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, L. Qin, Sci. Rep. 5, 10719 (2015).
  • [19] P.K. Bowen, J. Drelich, J. Goldman, Adv. Mater. 25, 2577-82 (2013).
  • [20] D. Vojtech, J. Kubasek, J. Serak, P. Novak, Acta Biomater. 7, 3515-22 (2011).
  • [21] H. Guo, Y. He, Y. Zheng, Y. Cui, Mater. Lett. 275, 128190 (2020).
  • [22] S. Zhao, C.T. Mcnamara, P.K. Bowen, N. Verhun, J.P. Braykovich, J. Goldman, J.W. Drelich, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 48, 1204-15 (2017).
  • [23] H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai, Y. Zheng, Nat. Commun. 11, 401 (2020).
  • [24] C. Xiao, L. Wang, Y. Ren, S. Sun, E. Zhang, C. Yan, Q. Liu, X. Sun, F. Shou, J. Duan, H. Wang, G. Qin, J. Mater. Sci. Technol. 34, 1618-27 (2018).
  • [25] J.L. Aschner, M. Aschner, Mol. Asp. 26, 353-62 (2005).
  • [26] D. Chen, Y.P. Ren, Y. Guo, W.L. Pei, H.D. Zhao, G.W. Qin, Trans. Nonferrous Met. Soc. China. 20, 1321-5 (2010).
  • [27] C. Zhao, F. Pan, Z. Shuang, H. Pan, S. Kai, A. Tang, A. Tang, Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 54, 245-51 (2015).
  • [28] J. Kubasek, D. Vojtech, J. Lipov, T. Ruml, Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 33, 2421-32 (2013).
  • [29] F.G. Meng, J. Wang, L.B. Liu, Z.P. Jin, J. Alloy. Compd. 508, 570-81 (2010).
  • [30] T. Kokubo, H. Takadama, Biomaterials. 27, 2907-15 (2006).
  • [31] H. Gong, K. Wang, R. Strich, J.G. Zhou, Biomed. Mater. Res. Part B. 103, 1632-40 (2015).
  • [32] C. Garcia-Mintegui, L.C. Cordoba, J. Buxadera-Palomero, A. Marquina, E. Jimenez-Pique, M.P. Ginebra, J.L. Cortina, M. Pegueroles, Bioact. Mater. 6, 4430-46 (2021).
Uwagi
1. Authors are grateful for the support of experiments works by project China Scholarship Council (CSC 201908450006) under start 2021 program and the Ministry-province jointly-constructed cultivation base for the State Key Laboratory of Processing for Non-ferrous Metal & Featured Materials Foundation.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00f9ba68-1dbf-4476-b22e-78417226a7ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.