PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Efficient rotordynamic simulations with semi-analytical computation of hydrodynamic forces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A common problem in transient rotordynamic simulations is the numerical effort necessary for the computation of hydrodynamic bearing forces. Due to the nonlinear interaction between the rotordynamic and hydrodynamic systems, an adequate prediction of shaft oscillations requires a solution of the Reynolds equation at every time step. Since closed-form analytical solutions are only known for highly simplified models, numerical methods or look-up table techniques are usually employed. Numerical solutions provide excellent accuracy and allow a consideration of various physical influences that may affect the pressure generation in the bearing (e.g., cavitation or shaft tilting), but they are computationally expensive. Look-up tables are less universal because the interpolation effort and the database size increase significantly with every considered physical effect that introduces additional independent variables. In recent studies, the Reynolds equation was solved semianalytically by means of the scaled boundary finite element method (SBFEM). Compared to the finite element method (FEM), this solution is relatively fast if a small discretization error is desired or if the slenderness ratio of the bearing is large. The accuracy and efficiency of this approach, which have already been investigated for single calls of the Reynolds equation, are now examined in the context of rotordynamic simulations. For comparison of the simulation results and the computational effort, two numerical reference solutions based on the FEM and the finite volume method (FVM) are also analyzed.
Rocznik
Strony
art. no. e148252
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Otto von Guericke University, Institute of Mechanics, Universitätspl. 2, 39106 Magdeburg, Germany
  • Otto von Guericke University, Institute of Mechanics, Universitätspl. 2, 39106 Magdeburg, Germany
  • Otto von Guericke University, Institute of Mechanics, Universitätspl. 2, 39106 Magdeburg, Germany
Bibliografia
  • [1] B. Schweizer, “Oil whirl, oil whip and whirl/whip synchronization occurring in rotor systems with full-floating ring bearings,” Nonlinear Dyn., vol. 57, no. 4, pp. 509–532, 2009.
  • [2] E. Woschke, C. Daniel, and S. Nitzschke, “Excitation mechanisms of non-linear rotor systems with floating ring bearings – simulation and validation,” Int. J. Mech. Sci., vol. 134, pp. 15–27, 2017.
  • [3] O. Reynolds, “On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil,” Philos. Trans. R. Soc. Lond., vol. 177, pp. 157–234, 1886.
  • [4] A. Sommerfeld, “The hydrodynamic theory of lubrication friction,” Z. Math. Phys., vol. 50, no. 1-2, pp. 97–155, 1904.
  • [5] F.W. Ocvirk, “Short-bearing approximation for full journal bearings,” National Advisory Committee for Aeronautics, Tech. Rep. 2808, 1952.
  • [6] M.M. Reddi, “Finite-element solution of the incompressible lubrication problem,” J. Lubr. Technol., vol. 91, no. 3, pp. 524–533, 07 1969, doi: 10.1115/1.3554977.
  • [7] K.H. Huebner, D.L. Dewhirst, D.E. Smith, and T.G. Byrom, The Finite Element Method for Engineers. John Wiley & Sons, 2001.
  • [8] M. Arghir, A. Alsayed, and D. Nicolas, “The finite volume solution of the Reynolds equation of lubrication with film discontinuities,” Int. J. Mech. Sci., vol. 44, no. 10, pp. 2119–2132, 2002.
  • [9] W.M. Dmochowski, A. Dadouche, and M. Fillon, Finite difference method for fluid-film bearings. Boston, MA: Springer US, 2013, pp. 1137–1143.
  • [10] B. Schweizer, “Total instability of turbocharger rotors – physical explanation of the dynamic failure of rotors with full-floating ring bearings,” J. Sound Vibr., vol. 328, no. 1-2, pp. 156–190, 2009.
  • [11] A. Chasalevris, P. Nikolakopoulos, and C. Papadopoulos, “Aligned and misaligned wear pattern in fluid film bearings and influence on the rotor response,” in Proceedings of the 9th International Conference on Vibrations in Rotating Machines SIRM, 2011.
  • [12] R. Eling, M. Te Wierik, R. Van Ostayen, and D. Rixen, “Towards accurate prediction of unbalance response, oil whirl and oil whip of flexible rotors supported by hydrodynamic bearings,” Lubricants, vol. 4, no. 3, p. 33, 2016.
  • [13] H.G. Elrod, “A cavitation algorithm,” J. Lubr. Technol., vol. 103, no. 3, pp. 350–354, 07 1981, doi: 10.1115/1.3251669.
  • [14] N.S. Feng and E.J. Hahn, “Density and viscosity models for two-phase homogeneous hydrodynamic damper fluids,” ASLE Trans., vol. 29, no. 3, pp. 361–369, 1986.
  • [15] J.F. Booker and S. Boedo, “Finite element analysis of elastic engine bearing lubrication: theory,” Revue Européenne des Éléments Finis, vol. 10, no. 6-7, pp. 705–724, 2001.
  • [16] S. Boedo and J.F. Booker, “Finite element analysis of elastic engine bearing lubrication: application,” Revue Européenne des Éléments Finis, vol. 10, no. 6-7, pp. 725–739, 2001.
  • [17] C. Irmscher, C. Ziese, M. Kreschel, and E. Woschke, “Run-up simulation of an automotive turbocharger rotor using an extensive thermo-hydrodynamic bearing model,” in SIRM 2021 – 14th International Conference on Dynamics of Rotating Machines, G. Żywica and T. Szolc, Eds., Institute of Fluid Flow Machinery, Polish Academy of Sciences. Gda´nsk, Poland: IMP PAN Publishers, 2021, pp. 145–155.
  • [18] E. Woschke, C. Daniel, S. Nitzschke, and J. Strackeljan, “Numerical run-up simulation of a turbocharger with full floating ring bearings,” in Vibration Problems ICOVP 2011: the 10th International Conference on Vibration Problems. ICOVP 2011 Supplement, 2011, p. 334.
  • [19] S. Pfeil, H. Gravenkamp, F. Duvigneau, and E. Woschke, “Scaled boundary finite element method for hydrodynamic bearings in rotordynamic simulations,” Int. J. Mech. Sci., vol. 199, p. 106427, 2021.
  • [20] S. Pfeil, H. Gravenkamp, F. Duvigneau, and E. Woschke, “High-order SBFEM solution of the Reynolds equation,” in Proceedings in Applied Mathematics and Mechanics, vol. 21. Wiley On-line Library, 2021, doi: 10.1002/pamm.202100028.
  • [21] S. Pfeil, H. Gravenkamp, F. Duvigneau, and E. Woschke, “Semi-analytical solution of the Reynolds equation considering cavitation,” Int. J. Mech. Sci., vol. 247, p. 108164, 2023, doi: 10.1016/j.ijmecsci.2023.108164.
  • [22] J.P. Wolf and C. Song, “Consistent infinitesimal finite-element cell method: in-plane motion,” Comput. Meth. Appl. Mech. Eng., vol. 123, no. 1-4, pp. 355–370, 1995.
  • [23] C. Song and J.P. Wolf, “Consistent infinitesimal finite-element cell method: out-of-plane motion,” J. Eng. Mech., vol. 121, no. 5, pp. 613–619, 1995.
  • [24] I. Chiong, E.T. Ooi, C. Song, and F. Tin-Loi, “Scaled boundary polygons with application to fracture analysis of functionally graded materials,” Int. J. Numer. Methods Eng., vol. 98, no. 8, pp. 562–589, 2014.
  • [25] C. Song and J.P. Wolf, “Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method,” Comput. Struct., vol. 80, no. 2, pp. 183–197, 2002.
  • [26] Y. Hori, Hydrodynamic Lubrication. Springer Science & Business Media, 2006.
  • [27] L.F. Shampine, M.W. Reichelt, and J.A. Kierzenka, “Solving index-1 DAEs in MATLAB and Simulink,” SIAM Rev., vol. 41, no. 3, pp. 538–552, 1999, doi: 10.1137/S003614459933425X.
  • [28] M. Okereke and S. Keates, “Finite element applications,” Cham: Springer International Publishing AG, 2018.
  • [29] F. Moukalled, L. Mangani, and M. Darwish, The Discretization Process. Cham: Springer International Publishing, 2016, pp. 85–101.
  • [30] N.J. Higham, “Cholesky factorization,” WIREs Comput. Stat., vol. 1, no. 2, pp. 251–254, 2009, doi: 10.1002/wics.18.
  • [31] F.B. Hildebrand, Introduction to Numerical Analysis: Second Edition, ser. Dover Books on Mathematics. Dover Publications, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00f93ae5-9c30-4b8f-a59f-e408dfc64532
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.