PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Printing Parameters on Leakage and Strength of Fused Deposition Modelling 3D Printed Parts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fused Deposition Modelling (FDM) 3D printing technology has become popular for producing prototypes and final parts in various industries, including the automotive, aerospace, and medical sectors. The leakage of such components is often an important factor in determining their possible applications. This paper focuses on researching the influence of printing parameters on leakage and relating the results to the strength of parts produced using this technology. The printing parameters considered were temperature and layer height. PLA (polylactic acid) was chosen as the material due to its biodegradability and biocompatibility. Leakage measurements were carried out using an empty cylinder-shaped vessel filled with air under pressure. The leakage value was observed as a pressure drop over time. It was shown that 3D-printed FDM vessels are not perfectly leak-proof, but the value of observed leakage may be acceptable for selected applications (leakage below 2.5 Pa/s). The results showed a high correlation be-tween the height of the printed layer in both the leakage and strength of the tested samples, while reducing the height increased the tightness and strength of the 3D-printed parts. The effect of printing temperature was less significant.
Słowa kluczowe
Twórcy
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Maintenance
Bibliografia
  • 1. Blaj M., Oancea G. Fused deposition modelling process: a literature review. Materials Science and Engineering 2021; 1009; 1-18, doi:10.1088/1757-899X/1009/1/012006.
  • 2. Klahn C., Leutenecker B., Meboldt M. Design Strategies for the Process of Additive Manufacturing. Procedia CIRP 2015; 36: 230-235, doi: 10.1016/j.procir.2015.01.082
  • 3. Tanveer M., Suhaib M., Haleem A. A. Retrospective Investigation of Mechanical and Physical Properties of ABS Specimen Developed by Manual Injection Moulding and Fused Deposition Modelling. Lect. Notes Mech. Eng., New Delhi, India 2020: 965–978, doi: 10.1007/978-981-15-5463-6_85
  • 4. Song Y. et al., Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials & Design 2017; 123: 154-164, doi: 10.1016/j.matdes.2017.03.051
  • 5. Nieciąg H, Kudelski R, Dudek P, Cieslik J. An Exploratory Study on the Accuracy of Parts Printed in FDM Processes from Novel Materials. Acta Mechanica et Automatica. 2020; 14: 59-68; doi:10.2478/ama-2020-0009
  • 6. Melnikova R., Ehrmann A., Finsterbusch K. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. IOP Conference Series: Materials Science and Engineering 2014; 62(1): 012018, doi: 10.1088/1757-899X/62/1/012018
  • 7. Alsoufi M., El-Sayed A. How Surface Roughness Performance of Printed Parts Manufactured by Desktop FDM 3D Printer with PLA+ is Influenced by Measuring Direction. American Journal of Mechanical Engineering 2017; 5: 221-222, doi:10.12691/ajme-5-5-4
  • 8. Blaj M., Oancea G.. Fused deposition modelling process: a literature review. Materials Science and Engineering 2021; 1009: 012006, doi:10.1088/1757-899X/1009/1/012006
  • 9. Abdulridha H.H., Abbas T.F. Analysis and Investigation the Effect of the Printing Parameters on the Mechanical and Physical Properties of PLA Parts Fabricated via FDM Printing. Advances in Science and Technology Research Journal 2023; 17(6): 49-62, doi: 10.12913/22998624/173562
  • 10. Singh D., Babbar A., Jain V., Gupta D., Saxena S., Dwivedi V. Synthesis, characterization, and bioactivity investigation of biomimetic biodegradable PLA scaffold fabricated by fused filament fabrication process. J. Braz. Soc. Mech. Sci. Eng. 2019; 41 (3), doi: 10.1007/s40430-019-1625-y
  • 11. Tanveer M., Gautam M., Siddharth M., Rohan S. Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts- a current review. Materials Today: Proceedings 2022; 62: 100-108, doi: 10.1016/j.matpr.2022.02.310
  • 12. Doshi M., Ameya M., Suraj S., Samadhan D. Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects. Materials Today: Proceedings 2021; 50: 2269-2275, doi: 10.1016/j.matpr.2021.10.003
  • 13. Lee B.H., Abdullah J., Khan Z.A. Optimization of rapid prototyping parameters for production of flexible abs object. J Mater Process Technol. 2005; 169(1): 54-61, doi: 10.1016/j.jmatprotec.2005.02.259
  • 14. Maria F.J., Abdullah F.H., Tahseen F.A. Investigation of the Effect of Surface Roughness and Dimensional Accuracy on the Layer Thickness of PLA Parts Produced by the FDM Process. Progress in Engineering Technology V 2023; 183: 19-29.
  • 15. Mohammadreza L.D., Mohd K.A.M.A. The effects of Combined Infill Patterns on Mechanical Properties in FDM Process. Polymers 2020; 12(12): 2792. https://doi:10.3390/polym12122792
  • 16. Abeykoon C., Sri-Amphorn P., Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures, International Journal of Lightweight Materials and Manufacture 2020; 3(3): 284-297, doi: 10.1016/j.ijlmm.2020.03.003
  • 17. Alaimo G.A., Marconi S., Costato L., Auricchio F. Influence of meso-structure and chemical composition on FDM 3D-printed parts. Composites Part B: Engineering 2017; 113: 371-380, doi: 10.1016/j.compositesb.2017.01.019
  • 18. Seshadri B., Hischier I., Masania K., Schlueter A. 3D Printed Vacuum-Tight Polymer Components for Passive Heat Transfer Structures. SSRN Electronic Journal 2023, doi: 10.2139/ssrn.4358153
  • 19. Abeykoon C., Sri-Amphorn P., Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture 2020; 3(3): 284-297, doi: 10.1016/j.ijlmm.2020.03.003
  • 20. Mahmoud H., František V., Mazal P., Jana M. Leakage analysis of pneumatic cylinders using acoustic emission. Insight: Non-Destructive Testing and Condition Monitoring 2017; 59: 500-505, doi:10.1748/insi.2017.59.9.500.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00f6f599-befb-4631-8642-a05f1e809343
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.