PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In-situ testing and heterogeneity of UFG Cu at elevated temperatures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The motivation of present investigation is the study of deformation-induced processes during in-situ tensile and compression test at elevated temperature in order to elucidate the role of the microstructure changes during creep testing. Design/methodology/approach: Experiments were conducted to investigate deformation-induced processes during in-situ tensile test at elevated temperature. Findings: It was found that creep resistance of UFG pure Al and Cu is considerably improved after one ECAP pass in comparison with coarse grained material, however, further repetitive pressing leads to a noticeable deterioration in creep properties of ECAP material. Researches limitations/implications: In the present work was found that ultrafine-grained microstructure is instable and significant grain growth has already occurred during heating to the testing temperature. Originality/value: The experiments conducted on pure Al and Cu found that their creep resistance is considerably improved after one ECAP pass in comparison with unpressed material.
Rocznik
Strony
69--74
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • TESCAN ORSAY HOLDING, a.s., Libušina tř. 21, Brno, CZ -623 00, Czech Republic
autor
  • Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, CZ-616 62, Czech Republic
autor
  • Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, CZ-616 62, Czech Republic
autor
  • Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, CZ-616 62, Czech Republic
  • Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, CZ-616 62, Czech Republic
Bibliografia
  • [1] R.Z. Valiev, R.K. Islamgalie, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103-189.
  • [2] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51 (2006) 881-981.
  • [3] V. Sklenicka, J. Dvorak, P. Kral, Z. Stonavska, M. Svoboda, Creep processes in pure aluminium processed by equal-channel angular dressing, Materials Science and Engineering A 410-411 (2005) 408-412.
  • [4] V. Sklenicka, J. Dvorak, P. Kral, M. Svoboda, I. Saxl, Some factors affecting the creep behaviour of metallic materials processed by equal-channel angular pressing, International Journal of Materials Research 100/6 (2009) 762-766.
  • [5] V. Sklenicka, J. Dvorak, M. Svoboda, P. Kral, B. Vlach, Effect of Processing Route on Microstructure and Mechanical Behaviour of Ultrafine Grained Metals Processed by Severe Plastic Deformation, Materials Science and Engineering A 482 (2005) 83-88.
  • [6] V. Sklenička, J. Dvorak, M. Svoboda, Creep in ultrafine grained aluminium, Materials Science and Engineering A 387-389 (2004) 696-701.
  • [7] P. Kral, J. Dvorak, P. Seda, A. Jäger, V. Sklenicka, Creep in Al Single Crystal processed by Equal-channel angular pressing, Reviews on Advanced Materials Science 31 (2012) 138-144.
  • [8] J. Dvorak, V. Sklenicka, P. Kral, M. Svoboda, I. Saxl, Characterization of Creep Behaviour and Micro-structure Changes in Pure Copper Processed by Equalchannel angular dressing, Reviews on advanced materials science 25 (2010) 225-232.
  • [9] M. Kawasaki, I.J. Beyerlein, S.C. Vogel, T.G. Langdon, Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing, Acta Materialia 56 (2008) 2307-2317.
  • [10] C. Xu, M. Kawasaki, T.G. Langdon, The high-temperature creep properties of materials processed using severe plastic deformation, International Journal of Materials Research 100/6 (2009) 750-756.
  • [11] W. Blum, J. Dvorak, P. Kral, F. Eisenlohr, V. Sklenicka, Effect of grain refinement by ECAP on creep of pure Cu, Materials Science and Engineering A 590 (2014) 423-432
  • [12] W. Blum, J. Dvorak, P. Kral, F. Eisenlohr, V. Sklenicka, What is ‘‘stationary’’ deformation of pure Cu, Journal of Materials Science (in print).
  • [13] J. Cadek, Creep in Metallic Materials, Elsevier Science Publishers, Amsterdam, 1988.
  • [14] M.E. Kassner, Fundamentals of Creep in Metals and Alloys, Elsevier, Amsterdam, 2009.
  • [15] Y.M. Wang, M.V. Chen, F.H. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912-915.
  • [16] D.P. Field, R.C. Eames, T.M. Lillo, The role of shear stress in the formation of annealing twin boundaries in copper, Scripta Materialia 54 (2006) 983-986.
  • [17] X. Molodova, G. Gottstein, M. Winning, R.J. Hellmig, Thermal stability of ECAP processed pure copper, Materials Science and Engineering A 460-461 (2007) 204-213.
  • [18] T. Watanabe, S. Tsurekawa, The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering, Acta Materialia 47 (1999) 4171-4185.
  • [19] P. Kral, M. Svoboda, J. Dvorak, M. Kvapilova, V. Sklenicka, Microstructure Mechanisms Governing the Creep Life of Ultrafine-grained Cu-0.2wt.%Zr Alloy, Acta Physica Polonica A 122 (2012) 457-460.
  • [20] H. Kokawa, T. Watanabe, S. Karashima, Sliding behaviour and dislocation structures in aluminium grain boundaries, Philosophical Magazine A 44 (1981) 1239-1254.
  • [21] T. Watanabe, S.I. Kimura, S. Karashima, The effect of a grain boundary structural transformation on sliding in <1010>-tilt zinc bicrystals, Philosophical Magazine 49 (1984) 845-864.
  • [22] G.A. Sargent, A.P. Zane, P.N. Fagin, A.K. Ghosh, S.L. Semiati, Low-temperature coarsening and plastic flow behaviour of an alpha/beta titanium billet material with an ultrafine microstructure, Metallurgical and Materials Transactions A 39 (2008) 2949-2963.
  • [23] K.V. Ivanov, E.V. Naydenkin, Activation parameters and deformation mechanisms of ultrafine-grained copper under tension at moderate temperatures, Materials Science and Engineering A (in print).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00f5fe6a-7a62-4ae3-a9a7-fd0c0f10894e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.