Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The motivation of present investigation is the study of deformation-induced processes during in-situ tensile and compression test at elevated temperature in order to elucidate the role of the microstructure changes during creep testing. Design/methodology/approach: Experiments were conducted to investigate deformation-induced processes during in-situ tensile test at elevated temperature. Findings: It was found that creep resistance of UFG pure Al and Cu is considerably improved after one ECAP pass in comparison with coarse grained material, however, further repetitive pressing leads to a noticeable deterioration in creep properties of ECAP material. Researches limitations/implications: In the present work was found that ultrafine-grained microstructure is instable and significant grain growth has already occurred during heating to the testing temperature. Originality/value: The experiments conducted on pure Al and Cu found that their creep resistance is considerably improved after one ECAP pass in comparison with unpressed material.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
69--74
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- TESCAN ORSAY HOLDING, a.s., Libušina tř. 21, Brno, CZ -623 00, Czech Republic
autor
- Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, CZ-616 62, Czech Republic
autor
- Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, CZ-616 62, Czech Republic
autor
- Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, CZ-616 62, Czech Republic
autor
- Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Brno, CZ-616 62, Czech Republic
Bibliografia
- [1] R.Z. Valiev, R.K. Islamgalie, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103-189.
- [2] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science 51 (2006) 881-981.
- [3] V. Sklenicka, J. Dvorak, P. Kral, Z. Stonavska, M. Svoboda, Creep processes in pure aluminium processed by equal-channel angular dressing, Materials Science and Engineering A 410-411 (2005) 408-412.
- [4] V. Sklenicka, J. Dvorak, P. Kral, M. Svoboda, I. Saxl, Some factors affecting the creep behaviour of metallic materials processed by equal-channel angular pressing, International Journal of Materials Research 100/6 (2009) 762-766.
- [5] V. Sklenicka, J. Dvorak, M. Svoboda, P. Kral, B. Vlach, Effect of Processing Route on Microstructure and Mechanical Behaviour of Ultrafine Grained Metals Processed by Severe Plastic Deformation, Materials Science and Engineering A 482 (2005) 83-88.
- [6] V. Sklenička, J. Dvorak, M. Svoboda, Creep in ultrafine grained aluminium, Materials Science and Engineering A 387-389 (2004) 696-701.
- [7] P. Kral, J. Dvorak, P. Seda, A. Jäger, V. Sklenicka, Creep in Al Single Crystal processed by Equal-channel angular pressing, Reviews on Advanced Materials Science 31 (2012) 138-144.
- [8] J. Dvorak, V. Sklenicka, P. Kral, M. Svoboda, I. Saxl, Characterization of Creep Behaviour and Micro-structure Changes in Pure Copper Processed by Equalchannel angular dressing, Reviews on advanced materials science 25 (2010) 225-232.
- [9] M. Kawasaki, I.J. Beyerlein, S.C. Vogel, T.G. Langdon, Characterization of creep properties and creep textures in pure aluminum processed by equal-channel angular pressing, Acta Materialia 56 (2008) 2307-2317.
- [10] C. Xu, M. Kawasaki, T.G. Langdon, The high-temperature creep properties of materials processed using severe plastic deformation, International Journal of Materials Research 100/6 (2009) 750-756.
- [11] W. Blum, J. Dvorak, P. Kral, F. Eisenlohr, V. Sklenicka, Effect of grain refinement by ECAP on creep of pure Cu, Materials Science and Engineering A 590 (2014) 423-432
- [12] W. Blum, J. Dvorak, P. Kral, F. Eisenlohr, V. Sklenicka, What is ‘‘stationary’’ deformation of pure Cu, Journal of Materials Science (in print).
- [13] J. Cadek, Creep in Metallic Materials, Elsevier Science Publishers, Amsterdam, 1988.
- [14] M.E. Kassner, Fundamentals of Creep in Metals and Alloys, Elsevier, Amsterdam, 2009.
- [15] Y.M. Wang, M.V. Chen, F.H. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419 (2002) 912-915.
- [16] D.P. Field, R.C. Eames, T.M. Lillo, The role of shear stress in the formation of annealing twin boundaries in copper, Scripta Materialia 54 (2006) 983-986.
- [17] X. Molodova, G. Gottstein, M. Winning, R.J. Hellmig, Thermal stability of ECAP processed pure copper, Materials Science and Engineering A 460-461 (2007) 204-213.
- [18] T. Watanabe, S. Tsurekawa, The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering, Acta Materialia 47 (1999) 4171-4185.
- [19] P. Kral, M. Svoboda, J. Dvorak, M. Kvapilova, V. Sklenicka, Microstructure Mechanisms Governing the Creep Life of Ultrafine-grained Cu-0.2wt.%Zr Alloy, Acta Physica Polonica A 122 (2012) 457-460.
- [20] H. Kokawa, T. Watanabe, S. Karashima, Sliding behaviour and dislocation structures in aluminium grain boundaries, Philosophical Magazine A 44 (1981) 1239-1254.
- [21] T. Watanabe, S.I. Kimura, S. Karashima, The effect of a grain boundary structural transformation on sliding in <1010>-tilt zinc bicrystals, Philosophical Magazine 49 (1984) 845-864.
- [22] G.A. Sargent, A.P. Zane, P.N. Fagin, A.K. Ghosh, S.L. Semiati, Low-temperature coarsening and plastic flow behaviour of an alpha/beta titanium billet material with an ultrafine microstructure, Metallurgical and Materials Transactions A 39 (2008) 2949-2963.
- [23] K.V. Ivanov, E.V. Naydenkin, Activation parameters and deformation mechanisms of ultrafine-grained copper under tension at moderate temperatures, Materials Science and Engineering A (in print).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00f5fe6a-7a62-4ae3-a9a7-fd0c0f10894e