Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the growing rate of urbanisation, deep foundations are playing an ever-larger role in the development of cities, reaching deeper than before to fulfil the requirements of new constructions. While current European standards include design procedures for structural and geotechnical design, they lack provisions for massive deep foundations with regard to early-age thermal effects. This paper presents aspects of the phenomenon especially important for deep foundations and discusses normative requirements that influence their thermal behaviour. Further, the paper describes the methods and results of the research carried out in the United Kingdom on 1.50-m-thick diaphragm walls of a deep circular shaft. Shaft features are described, as well as the materials used. The measurements were carried out using vibrating wire strain gauges coupled with temperature readings. The results presented refer to one of the test panels concreted in January 2020. The temperature results are analysed together with the influence of work scheduling on the readings. Strain results that indicate contractive behaviour of the test panel are investigated together with the possible causes leading to such readings. Plans and directions for future research are discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
510--520
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
- Soletanche Polska Sp. z o.o., ul. Powązkowska 44c, 01-797 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Bibliografia
- [1] Bamforth, P. B. (2007). CIRIA Report C660: Early-age thermal crack control in concrete. In CIRIA.
- [2] Bamforth, P. B. (2018). CIRIA Report C766: Control of cracking caused by restrained deformation in concrete.
- [3] De Schutter, G. (1999). Hydration and temperature development of concrete made with blast-furnace slag cement. Cement and Concrete Research, 29(1). https://doi.org/10.1016/S0008-8846(98)00229-4
- [4] Klemczak, B., & Batog, M. (2016). Heat of hydration of low-clinker cements: Part I. Semi-adiabatic and isothermal tests at different temperature. Journal of Thermal Analysis and Calorimetry, 123(2). https://doi.org/10.1007/s10973-015-4782-y
- [5] Klemczak, B., & Żmij, A. (2021). Insight into thermal stress distribution and required reinforcement reducing early-age cracking in mass foundation slabs. Materials, 14(3). https://doi.org/10.3390/ma14030477
- [6] Larisch, M. (2019). Fundamental Mechanisms of Concrete Bleeding in Bored Piles.
- [7] LCPC. (2007). Recommandations pour la prévention des désordres dus à la réaction sulfatique interne - Guide technique.
- [8] Liou, D. D. (1999). Thermal Effects in Large-Sized Diaphragm Wall. Journal of Performance of Constructed Facilities, 13(1). https://doi.org/10.1061/(asce)0887-3828(1999)13:1(17)
- [9] Mitew-Czajewska, M., & Tomczak, U. (2019). A case study of excavation induced displacements in dense urban area. Tunnels and Underground Cities: Engineering and Innovation Meet Archaeology, Architecture and Art- Proceedings of the WTC 2019 ITA-AITES World Tunnel Congress. https://doi.org/10.1201/9780429424441-626
- [10] Mitew-Czajewska, Monika, & Siemińska-Lewandowska, A. (2016). The second metro line in Warsaw - Lessons learnt. ITA-AITES World Tunnel Congress 2016, WTC 2016, 4.
- [11] PKN. (2008). PN-EN 1992-1-1:2008 - wersja polska. Eurokod 2 -- Projektowanie konstrukcji z betonu -- Część 1-1: Reguły ogólne i reguły dla budynków.
- [12] PKN. (2012). PN-EN 197-1:2012 - wersja polska. Cement -- Część 1: Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku.
- [13] PKN. (2015). PN-EN 14216:2015-09 - wersja angielska. Cement -- Skład, wymagania i kryteria zgodności dotyczące cementów specjalnych o bardzo niskim cieple hydratacji.
- [14] PKN. (2016). PN-EN 206+A1:2016-12 - wersja polska. Beton -- Wymagania, właściwości, produkcja i zgodność.
- [15] Poulos, H. G. (2020). Sven Hansbo Lecture: Deep foundation design - Issues, procedures and inadequacies. In Lecture Notes in Civil Engineering (Vol. 62). https://doi.org/10.1007/978-981-15-2184-3_1
- [16] Sajadi, S. S. (2020). Thermal Behaviour Due to Heat of Hydration of Massive Concrete Underground Structures. Imperial College London.
- [17] Siemińska-Lewandowska, A., Mitew-Czajewska, M., & Tomczak, U. (2013). Various use of diaphragm walls for construction of multilevel road junction Design and monitoring of displacements. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, 3.
- [18] Siemińska-Lewandowska, A. (2010). Głębokie wykopy. Projektowanie i wykonawstwo. Wydawnictwa Komunikacji i Lacznosci WKL.
- [19] Siemińska-Lewandowska, Anna, & Mitew-Czajewska, M. (2008). Design of deep excavations according to Eurocode 7. Studia Geotechnica et Mechanica, Vol. 30(nr 1-2), 207–214.
- [20] Woyciechowski, P., Lukowski, P., & Adamczewski, G. (2020). Thermal shock as a cause of cracking of concrete in massive bridge support elements - a case study. Roads and Bridges - Drogi i Mosty, 19(4). https://doi.org/10.7409/rabdim.020.019
- [21] Zych, M. (2018). Degree of external restraint of wall segments in semi-massive reinforced concrete tanks: Part I rectangular segments. Structural Concrete, 19(3). https://doi.org/10.1002/suco.201700036
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00f1ac41-9380-4cae-9c58-892d09d9f47c