PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oily wastewater treatment using a zirconia ceramic membrane : a literature review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oczyszczanie ścieków olejowych przy zastosowaniu membran ceramicznych zawierających tlenek cyrkonu : przegląd literaturowy
Języki publikacji
EN
Abstrakty
EN
The goal of this article was to review the literature which discusses the problem of oily wastewater purification by membrane filtration. The authors focused on membranes containing zirconium compounds, mainly ZrO2, used in pressure driven membrane processes. The efficiency of the oil removal processes for various membranes (ceramic and composite), usually above 95% for the oil contaminated sewage, was compared. The influence of zirconium compounds on the properties of ceramic membranes was also discussed. The methods of producing ceramic membranes have been briefly characterized as well. Ceramic membranes are usually obtained by sol-gel technique but also by isostatic compression, reverse phase technique, or hydrothermal crystallization. Ceramic membranes are formed with zirconia, which cause an increase in filtration efficiency by improvement of hydrophilic properties of the membrane. Moreover, the addition of ZrO2 results in increased chemical and hydrothermal membrane stability. The efficiency of the filtration processes using the presented membranes was high, suggesting that membrane filtration processes are highly effective purification methods.
PL
Artykuł stanowi przegląd literatury, w którym omówiono problem oczyszczania ścieków olejowych w oparciu o filtrację membranową. Skupiono się na membranach ciśnieniowych zawierających związki cyrkonu, głównie ZrO2. Porównano skuteczność procesów oczyszczania dla różnych membran (ceramicznych i kompozytowych). Omówiono wpływ związków cyrkonu na właściwości użytkowe membran ciśnieniowych. Membrany ceramiczne są zwykle uzyskiwane za pomocą techniki zol-żel, ale również przez prasowanie izostatyczne, technikę odwróconej fazy lub krystalizację hydrotermiczną. Membrany ceramiczne są formowane z tlenkiem cyrkonu, co skutkuje wzrostem skuteczności filtracji.
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
  • Cracow University of Technology, Poland, Institute of Water Supply and Environmental Protection, Faculty of Environmental Engineering
autor
  • Cracow University of Technology, Poland, Institute of Water Supply and Environmental Protection, Faculty of Environmental Engineering
autor
  • Cracow University of Technology, Poland, Institute of Water Supply and Environmental Protection, Faculty of Environmental Engineering
Bibliografia
  • 1. Abbasi, M., Mirfendereski, M., Nikbakht, M., Golshenas, M. & Mohammadi, T. (2010). Performance study of mullite and mullite-alumina ceramic MF membranes for oily wastewaters treatment, Desalination, 259, pp. 169-178.
  • 2. Ankyu, E. & Noguchi, R. (2014). Economical evaluation of introducing oil-water separation technology to wastewater treatment of food processing factory based on separation engineering, Agriculture and Agricultural Science Procedia, 2, pp. 67-73.
  • 3. Araki, S., Kiyohara, Y, Imasaka, S., Tanaka, S. & Miyake, Y (2011). Preparation and pervaporation properties of silica-zirconia membranes, Desalination, 266, pp. 46-50.
  • 4. Arthanareeswaran, G. & Thanikaivelan, P. (2010). Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis, Separation and Purification Technology, 74, pp. 230-235.
  • 5. Azócar, I., Vargas, E., Duran, N., Arrieta, A., González, E., Pavez, J., Kogan, M. J., Zagal, J. H. & Paez, M.A. (2012). Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles, Materials Chemistry and Physics, 137, pp. 396-403.
  • 6. Chang, Q., Zhou, J., Wang, Y, Liang, J., Zhang, X., Cerneaux, S., Wang, X., Zhu, Z. & Dong, Y (2014). Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion, Journal of Membrane Science, 456, pp. 128-133.
  • 7. Chang, Q., Zhou, J., Wang, Y, Wang, J. & Meng, G. (2010). Hydrophilic modification of Al2O3 microfiltration membrane with nano-sized γ-Al2O3 coating, Desalination, 262, pp. 110-114.
  • 8. Coca, J., Gutierréz, G. & Benito, J.M. (2011). Treatment of oily wastewater, In: Water Purification and Management, Coca-Prados, J. & Gutiérrez-Cervelló, G. (eds.), Springer Science+Business Media B.V pp 1-55. Doi: 10.1007/978-90-481-9775-0_1
  • 9. Cui, J.Y, Zhang, X.F., Liu, H.O., Liu, S.Q. & Yeung, K.L. (2008). Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water, Journal of Membrane Science, 325, pp. 420-426.
  • 10. Da, X., Chen, X., Sun, B., Wen, J., Qiu, M. & Fan, Y. (2016). Preparation of zirconia nanofiltration membranes through an aqueous sol-gel process modified by glycerol for the treatment of wastewater with high salinity, Journal of Membrane Science, 504, pp. 29-39.
  • 11. Del Colle, R., Fortulan, C.A. & Fontes, S.R. (2011). Manufacture and characterization of ultra and microfiltration ceramic membranes by isostatic pressing, Ceramics International, 37, pp. 1161-1168.
  • 12. Duan, M., Wang, C., Song, X., Fang, S., Ma, Y & Tao, T. (2016). A block polyether designed quantitatively by HLD concept for recovering oil from wastewater, Chemical Engineering Journal, 302, pp. 44-49.
  • 13. Dziennik Ustaw 2014 poz. 1800. Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego.
  • 14. Emani, S., Uppaluri, R. & Purkait, M.K. (2014). Microfiltration of oil-water emulsion using low cost ceramic membranes prepared with the uniaxial dry compaction method, Ceramics International, 40, pp. 1155-1164.
  • 15. Eom, J.H., Kim, YW., Yun, S.H. & Song, I.H. (2014). Low-cost clay-based membranes for oily wastewater treatment, Journal of the Ceramic Society of Japan, 122, pp. 788-794.
  • 16. Hove, M.T., Nijmeijer, A. & Winnubst, L. (2015). Facile synthesis of zirconia doped hybrid organic inorganic silica membranes, Separation and Purification Technology, 147, pp. 372-378
  • 17. Hua, F.L., Tsang, Y.F., Wang, Y.J., Chan, S.Y., Chua, H. & Sin, S.N. (2007). Performance study of ceramic microfiltration membrane for oily wastewater treatment, Chemical Engineering Journal, 128, pp. 169-175.
  • 18. Jamshidi Gohari, R., Korminouri, F., Lau, W.J., Ismail, A.F., Matsuura, T., Chowdhury, M.N.K., Halakoo, E. & Jamshidi Gohari, M.S. (2015). A novel super-hydrophilic PSf/HAO nanocomposite ultrafiltration membrane for efficient separation of oil/water emulsion, Separation and Purification Technology, 150, pp. 13-20.
  • 19. Kajitvichyanukul, P., Hung, Y-T. & Wang, L.K. (2011). Membrane technologies for oil-water separation, In: Handbook of Environmental Engineering, Yang, C.T. & Wang, L.K. (ed.), Springer Science+Business Media, LLC, pp. 639-668. DOI: 10.1007/978-1-59745-278-6_15
  • 20. Khajavi, P. & Babaluo, A.A. (2015). Preparation of non-permselective sulfated zirconia catalytic membrane for use in a catalytic membrane reactor, Chemical Engineering Research and Design, 104, pp. 472-478.
  • 21. Koyuncu, I., Sengur, R., Turken, T., Guclu, S. & Pasaoglu, M.E.. Advances in water treatment by micro, ultra and nanofiltration, In: Advances in Membrane Technologies for Water Treatment, Basile, A., Cassano, A. & Rastogi, N.K. (eds.) Elsevier Ltd., pp. 83-128, (http://dx.doi.org/10.1016/B978-1-78242-121- -4.00003-4(12.06.2018)).
  • 22. Kumar, R.V., Ghoshal, A.K. & Pugazhenthi, G. (2015). Fabrication of zirconia composite membrane by in-situ hydrothermal technique and its application in separation of methyl orange, Ecotoxicology and Environmental Safety, 121, pp. 73-79.
  • 23. Kumar, S., Mandal, A. & Guria, C. (2016). Synthesis, characterization and performance studies of polysulfone and polysulfone/ polymer-grafted bentonite based ultrafiltration membranes for the efficient separation of oil field oily wastewater, Process Safety and Environmental Protection, 102, pp. 214-228.
  • 24. Lv, Y, Liu, H., Wang, Z., Liu, S., Hao, L., Sang, Y., Liu, D., Wang, J. & Boughton, R.I. (2009). Silver nanoparticle-decorated porous ceramic composite for water treatment, Journal of Membrane Science, 331, pp. 50-56.
  • 25. Lv, Y, Yang, H.-C., Liang, H.-Q., Wan, L.-S. & Xu, Z.-K. (2016). Novel nanofiltration membrane with ultrathin zirconia film as selective layer, Journal of Membrane Science, 500, pp. 265-271.
  • 26. Mittal, P., Jana, S. & Mohanty, K. (2011). Synthesis of low-cost hydrophilic ceramic-polymeric composite membrane for treatment of oily wastewater, Desalination, 282, pp. 54-62.
  • 27. Monash, P. & Pugazhenthi, G. (2011a). Development of ceramic supports derived from low-cost raw materials for membrane applications and its optimization based on sintering temperature, International Journal of Applied Ceramic Technology, 8, pp. 227-238.
  • 28. Monash, P. & Pugazhenthi, G. (2011b). Effect of TiO2 addition on the fabrication of ceramic membrane supports: a study on the separation of oil droplets and bovine serum albumin (BSA) from its solution, Desalination, 279, pp. 104-114.
  • 29. Mucha, Z. & Kurbiel-Swatek, K. (2015). Analysis of membrane reactors applications for municipal wastewater treatment plants in current operation and research experience, Przemysł Chemiczny, 95, pp. 236-240. DOI: 10.15199/62.2016.2.11
  • 30. Narong, P. & James, A.E. (2008). Efficiency of ultrafiltration in the separation of whey suspensions using a tubular zirconia membrane, Desalination, 219, pp. 348-357.
  • 31. Pan, J., Zhang, H., Chen, W. & Pan, M. (2010). Nafion-zirconia nanocomposite membranes formed via in situ sol-gel process, International Journal of Hydrogen Energy, 35, pp. 2796-2801.
  • 32. Pérez, L.S., Rodriguez, O.M., Reyna, S., Sánchez-Salas, J.L., Lozada, J.D., Quiroz, M.A. & Bandala, E.R. (2016). Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes, Physics and Chemistry of the Earth, 91, pp. 53-60.
  • 33. Pintor, A.M.A., Martins A.G., Souza R.S., Vilar V.J.P., Botelho, C.M.S. & Boaventura, R.A.R (2015). Treatment of vegetable oil refinery wastewater by sorption of oil and grease onto regranulated cork - A study in batch and continuous mode, Chemical Engineering Journal, 268, pp. 92-101.
  • 34. Pintor, A.M.A., Vilar, V.J.P., Botelho, C.M.S. & Boaventura, R.A.R.. Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review, Chemical Engineering Journal, 297, pp. 229-255.
  • 35. Qi, H., Zhu, G., Li, L. & Xu, N. (2012). Fabrication of a sol-gel derived microporous zirconia membrane for nanofiltration. Journal of Sol-Gel Science and Technology, 62, pp. 208-216. DOI 10.1007/s10971-012-2711-0
  • 36. Salahi, A., Noshadi, I., Badrnezhad, R., Kanjilal, B. & Mohammadi, T. (2013). Nano-porous membrane process for oily wastewater treatment: Optimization using response surface methodology, Journal of Environmental Chemical Engineering, 1, pp. 218-225.
  • 37. Sarfaraz, M.V., Ahmadpour, E., Salahi, A., Rekabdar, F. & Mirza, B. (2012). Experimental investigation and modeling hybrid nano-porous membrane process for industrial oily wastewater treatment, Chemical Engineering Research and Design, 90, pp. 1642-1651.
  • 38. Song, C.W., Wang, T.H. & Pan, Y.Q. (2006). Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment, Separation and Purification Technology, 51, pp. 80-84.
  • 39. The World Bank Group (1999). Pollution prevention and abatement handbook. The World Bank, Washington DC.
  • 40. Tong, K., Lin, A., Ji, G., Wang, D. & Wang, X. (2016). The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke, Journal of Hazardous Materials, 308, pp. 113-119.
  • 41. Tong, K., Zhang, Y., Liu, G., Ye, Z. & Chu, P.K. (2013). Treatment of heavy oil wastewater by a conventional activated sludge process coupled with an immobilized biological filter, International Biodeterioration & Biodegradation, 84, pp. 65-71.
  • 42. Van Gestel, T., Sebold, D., Kruidhof, H. & Bouwmeester, H.J.M. (2008). ZrO2 and TiO2 membranes for nanofiltration and pervaporation. Part 2. Development of ZrO2 and TiO2 toplayers for pervaporation, Journal of Membrane Science, 318, pp. 413-421.
  • 43. Vasanth, D., Pugazhenthi, G. & Uppaluri, R. (2013). Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes, Desalination, 320, pp. 86-95.
  • 44. Wu, J.C.-S. & Cheng, L.-C. (2000). An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor, Journal of Membrane Science, 167, pp. 253-261.
  • 45. Yang, T., Ma, Z.-F. & Yang, Q.-Y. (2011). Formation and performance of Kaolin/MnO2 bi-layer composite dynamic membrane for oily wastewater treatment: Effect of solution conditions, Desalination, 270, pp. 50-56.
  • 46. Yeom, H.-J., Kim, S.C., Kim, Y.-W. & Song, I.-H. (2016). Processing of alumina-coated clay-diatomite composite membranes for oily wastewater treatment, Ceramics International, 42, pp. 5024-5035.
  • 47. Yin, W., Meng, B., Meng, X. & Tan, X. (2009). Highly asymmetric yttria stabilized zirconia hollow fibre membranes, Journal of Alloys and Compounds, 476, pp. 566-570.
  • 48. Yu, S.L., Lu, Y., Chai, B.X. & Liu, J.H. (2006). Treatment of oily wastewater by organic-inorganic composite tubular ultrafiltration (UF) membranes, Desalination, 196, pp. 76-83.
  • 49. Yuliwati, E. & Ismail, A.F. (2011). Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment, Desalination, 273, pp. 226-234.
  • 50. Zhang, S., Wang, R., Zhang, S., Li, G. & Zhang, Y. (2014). Treatment of wastewater containing oil using phosphorylated silica nanotubes (PSNTs)/polyvinylidene fluoride (PVDF) composite membrane, Desalination, 332, pp. 109-116.
  • 51. Zhang, Y, Gao, X., Wang, Y., Zhang, Y & Lu, G.Q. (2009). Study on the build of channels in accurate separation membrane and its selective mechanism. Journal of Membmne Science, 339, pp. 100-108.
  • 52. Zhang, Y., Shan, X., Jin, Z. & Wang, Y. (2011). Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil, Journal of Hazardous Materials, 192, pp. 559-567.
  • 53. Zhou, J., Chang, Q., Wang, Y., Wang, J. & Meng, G. (2010). Separation of stable oil- water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane, Separation and Purification Technology, 75, pp. 243-248.
  • 54. Zhu, G., Jiang, Q., Qi, H. & Xu, N. (2015). Effect of sol size on nanofiltration performance of a sol-gel derived microporous zirconia membrane, Chinese Journal of Chemical Engineering, 23, pp. 31-41.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00ef822f-d278-4ba4-8b60-3c355ffc294c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.