PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of sintering time on structure and electrical properties of Pb-free BNT-BKT-SZ ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The work focuses on preparing and characterising BNT-based ceramics via a solid-state method. To investigate the phase, microstructure, and physical and electrical properties of BNT-based ceramics. Design/methodology/approach: Lead-free piezoelectric bismuth sodium titanate – bismuth potassium titanate – stronsium zirconate (BNT-BKT-SZ) ceramics were fabricated by the solid-state reaction method. The effect of sintering temperature with soaking times of 2, 4, and 6 h at 1150°C on structural, microstructure, density, porosity, and electrical properties was examined. The phase formation of the ceramics was examined using X-ray diffraction (XRD). Scanning electron microscopy (SEM) (JEOL JSM5910LV) was employed to investigate ceramic microstructure. The bulk density and mechanical properties of the sample were measured using Archimedes’ method, respectively. The electrical properties of ceramics, such as dielectrics, ferroelectrics, and piezoelectrics, were investigated. Findings: XRD showed all samples had a single perovskite structure and no secondary phase. All sintered samples at different temperatures have a coexisting phase boundary between the rhombohedral phase and the tetragonal phase. The sintered ceramic at 1150°C with a soaking time of 4 h shows a maximum density of 5.89 g/cm3. In addition, the temperature at which the sintering process is carried out substantially impacts the electrical characteristics. Dielectric and electric field-induced strain (Smax) properties that sintered at 1150°C with a soaking time of 4 h exhibited the highest values of 4.489 and 0.39% (d33* of 650 pm/V), respectively. Research limitations/implications: The impact of the coercive field on the electrical breakdown characteristics of ceramics should be investigated further in the course of research that has to be carried out. Practical implications: The characterisation confirmed the effects of sintering temperature on the physical, phase, microstructure, and electrical properties of BNT-based ceramics. Originality/value: Such research demonstrates a suitable sintering temperature for producing BNT-BKT-SZ. The mechanical and electrical properties of a material are dependent on its sintering parameters. The ceramic system is suitable for piezoelectric and/or energy storage applications.
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
  • Department of Metallurgical Technology, Faculty of Technical Education, Rajamangala University of Technology Krungthep (RMUTK), Bangkok, Thailand
autor
  • Department of Metallurgical Technology, Faculty of Technical Education, Rajamangala University of Technology Krungthep (RMUTK), Bangkok, Thailand
autor
  • Department of Metallurgical Technology, Faculty of Technical Education, Rajamangala University of Technology Krungthep (RMUTK), Bangkok, Thailand
autor
  • Department of Industrial Technology, Faculty of Technical Education, Rajamangala University of Technology Krungthep (RMUTK), Bangkok, Thailand
autor
  • Physics Division, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
Bibliografia
  • [1] H. Ying, G. Ding, J. Zhao, J. Wang, Z. Liu, M. Zhou, J. Ye, Properties of PSN-PZT piezoelectric ceramic powder prepared by fast solid-phase reaction method, Materials Today Communications 35 (2023) 106086. DOI: https://doi.org/10.1016/j.mtcomm.2023.106086
  • [2] U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, A. Feteira, Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics, Materials Research Bulletin 97 (2018) 385-392. DOI: https://doi.org/10.1016/j.materresbull.2017.09.032
  • [3] S.H. Bakhy, M. Al-Waily, M.A. Al-Shammari, Analytical and numerical investigation of the free vibration of functionally graded materials sandwich beams, Archives of Materials Science and Engineering 110/2 (2021) 72-85. DOI: https://doi.org/10.5604/01.3001.0015.4314
  • [4] M.J. Jweeg, D.A. Alazawi, Q.H. Jebur, M. Al-Waily, N.J. Yasin, Hyperelastic modelling of rubber with multi-walled carbon nanotubes subjected to tensile loading, Archives of Materials Science and Engineering 114/2 (2022) 69-85. DOI: https://doi.org/10.5604/01.3001.0016.0027
  • [5] X. Huo, F. Wang, T. Zhang, M. Zhang, M. Guo, Adispersed polycrystalline phase boundary constructed in CaZrO3 modified KNN based ceramics with both excellent piezoelectric properties and thermal stability, Ceramics International 49/10 (2023) 15751-15760. DOI: https://doi.org/10.1016/j.ceramint.2023.01.169
  • [6] H. Kuang, T. Liang, X. He, S. Wu, V. Oleg, D. Pang, Dielectric, ferroelectric, and piezoelectric properties of rare earth Sm-doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 lead-free ceramics, Journal of Alloys and Compounds 960 (2023) 170913. DOI: https://doi.org/10.1016/j.jallcom.2023.170913
  • [7] X. Li, S. Yue, S. Zhang, W. Long, P. Fang, F. Guo, Z. Xi, Z. Dai, Simultaneously enhanced piezoelectric response and Curie temperature in rhombohedral BS– PT ceramics by Zr doping, Materials Research Bulletin 165 (2023) 112307. DOI: https://doi.org/10.1016/j.materresbull.2023.112307
  • [8] S. Senthil Murugan, P. Vijayakumar, Identification of ultrasonic frequency for water mist generation using piezoelectric transducer. Archives of Materials Science and Engineering 83/2 (2017) 74-78. DOI: https://doi.org/10.5604/01.3001.0009.9170
  • [9] A. Mohaisen, T. Ntayeesh, An experimental and theoretical piezoelectric energy harvesting from a simply supported beam with moving mass, Archives of Materials Science and Engineering 123/1 (2023) 13-29. DOI: https://doi.org/10.5604/01.3001.0053.9754
  • [10] M. Jureczko, J. Filas, M. Mrówka, The application of piezoelectric materials to convert kinetic energy into electrical energy, Journal of Achievements in Materials and Manufacturing Engineering 121/2 (2023) 231-237. DOI: https://doi.org/10.5604/01.3001.0054.3211
  • [11] M. Chomiak, Reuse of polyester-glass laminate waste in polymer composites, Journal of Achievements in Materials and Manufacturing Engineering 107/2 (2021) 49-58. DOI: https://doi.org/10.5604/01.3001.0015.3583
  • [12] M. Habib, F. Akram, A. Rahman, P. Ahmad, M.J. Iqbal, Q. Liu, A. Zeb, D. Zhang, Defects dipoles control strategy for temperature-insensitive piezoelectricity in the lead-free BiFeO3-BaTiO3 ceramics, Materials Chemistry and Physics 287 (2022) 126326. DOI: https://doi.org/10.1016/j.matchemphys.2022.126326
  • [13] M. Mesrar, A. Elbasset, N.-S. Echatoui, F. Abdi, T. Lamcharfi, Microstructural and high-temperature dielectric, piezoelectric and complex impedance spectroscopic properties of K0.5Bi0.5TiO3 modified NBT-BT lead-free ferroelectric ceramics, Heliyon 9/4 (2023) e14761. DOI: https://doi.org/10.1016/j.heliyon.2023.e14761
  • [14] X. Wang, Y. Huan, S. Ji, Y. Zhu, T. Wei, Z. Cheng, Ultra-high piezoelectric performance by rational tuning of heterovalent-ion doping in lead-free piezoelectric ceramics, Nano Energy 101 (2022) 107580. DOI: https://doi.org/10.1016/j.nanoen.2022.107580
  • [15] M. Habib, F. Akram, P. Ahmad, F.F. Al-Harbi, I. Ud Din, Q. Iqbal, T. Ahmed, S.A. Khan, A. Hussain, T.-K. Song, M.-H. Kim, S. Lee, Donor multiple effects on the ferroelectric and piezoelectric performance of lead-free BiFeO3-BaTiO3 ceramics, Materials Letters 315 (2022) 131950. DOI: https://doi.org/10.1016/j.matlet.2022.131950
  • [16] M. Ito, M. Hagiwara, S. Fujihara, Ferroelectric and piezoelectric properties of (Bi1/2K1/2)(ZrxTi1−x)O3 lead- DOI: https://doi.org/10.1016/j.matlet.2020.127776
  • [17] A. Deng, J. Wu, Enhanced strain and electrostrictive properties in lead-free BNT-based ceramics via rare earth doping, Journal of Materiomics 8/2 (2022) 401- 407. DOI: https://doi.org/10.1016/j.jmat.2021.08.002
  • [18] A. Syed, A. Sohail Khan, A. Ullah, M.R. Sarker, M. Tahir Khan, A. Ali, H. Ur Rashid, V. Tirth, A. Zaman, Enhancement of the phase, optical and dielectric studies of Bi0.5Na0.5TiO3 (BNT) based structure ceramics, Journal of Saudi Chemical Society 27/2 (2023) 101617. DOI: https://doi.org/10.1016/j.jscs.2023.101617
  • [19] W. Kang, Z. Zheng, Y. Li, R. Zhao, Enhanced dielectric, piezoelectric properties and strengthened relaxor behavior in K-modified Na0.5Bi0.5TiO3 lead-free ceramics, Ceramics International 46/15 (2020) 24091- 24096. DOI: https://doi.org/10.1016/j.ceramint.2020.06.187
  • [20] Q. Wei, M. Zhu, M. Zheng, Y. Hou, High piezoelectric properties above 150°C in (Bi0.5Na0.5)TiO3-Based lead-free piezoelectric ceramics, Materials Chemistry and Physics 249 (2020) 122966. DOI: https://doi.org/10.1016/j.matchemphys.2020.122966
  • [21] X. Wang, H. Gao, X. Hao, X. Lou, Enhanced piezo-electric, electrocaloric and energy storage properties at high temperature in lead-free Bi0.5(Na1-xKx)0.5TiO3 ceramics, Ceramics International 45/4 (2019) 4274- 4282. DOI: https://doi.org/10.1016/j.ceramint.2018.11.100
  • [22] R.I. Mahdi, N.J. Al-Bahnam, A.I. Abbo, J.K. Hmood, W.H.A. Majid, Optimization of sintering temperature for the enhancement of pyroelectric properties of lead-free 0.88(Na0.5Bi0.5)TiO3–0.084(K0.5Bi0.5)TiO3– 0.036BaTiO3 piezoelectric ceramics, Journal of Alloys and Compounds 688/A (2016) 77-87. DOI: https://doi.org/10.1016/j.jallcom.2016.06.290
  • [23] P. Fan, Y. Zhang, J. Huang, W. Hu, D. Huang, Z. Liu, B. Xie, X. Li, J. Xiao, H. Zhang, Constrained sintering and electrical properties of BNT–BKT lead-free piezoceramic thick films, Ceramics International 42/2/A (2016) 2534-2541. DOI: https://doi.org/10.1016/j.ceramint.2015.10.055
  • [24] M. Afifi, A.O. Turky, M. Rasly, M.M. Rashad, J.A. Turner, Field-induced polarization response and energy storage behavior of lead-free BNT-BKT-SZ films, Ceramics International 46/16/A (2020) 26061-26068. DOI: https://doi.org/10.1016/j.ceramint.2020.07.099
  • [25] A. Maqbool, A. Hussain, J.U. Rahman, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, Ferroelectric and piezo-electric properties of SrZrO3-modified Bi0.5Na0.5TiO3 lead-free ceramics, Transactions of Nonferrous Metals Society of China 24/S1 (2014) s146-s151. DOI: https://doi.org/10.1016/S1003-6326(14)63302-1
  • [26] J. Hao, Z. Xu, R. Chu, W. Li, J. Du, Large electric-field-induced strain in SrZrO3 modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free electromechanical ceramics with fatigue-resistant behavior, Journal of Alloys and Compounds 647 (2015) 857-865. DOI: https://doi.org/10.1016/j.jallcom.2015.06.151
  • [27] Y.-R. Zhang, J.-F. Li, B.-P. Zhang, Enhancing Electrical Properties in NBT–KBT Lead-Free Piezoelectric Ceramics by Optimizing Sintering Temperature, Journal of the American Ceramic Society 91/8 (2008) 2716-2719. DOI: https://doi.org/10.1111/j.1551-2916.2008.02469.x
  • [28] S. Zhang, W. Liu, G. Granata, Effects of grain size gradation on the porosity of packed heap leach beds, Hydrometallurgy 179 (2018) 238-244. DOI: https://doi.org/10.1016/j.hydromet.2018.06.014
  • [29] N.A. Ogolo, O.G. Akinboro, J.E. Inam, F.E. Akpokere, M.O. Onyekonwu, Effect of Grain Size on Porosity Revisited, Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 2015, SPE-178296-MS. DOI: https://doi.org/10.2118/178296-MS
  • [30] P. Butnoi, S. Manotham, T. Tunkasiri, Effect of sintering temperature on mechanical and electrical properties of lead-free Bi0.5(Na0.4K0.1)Ti0.98Zr0.02O3 piezoelectric ceramics, Key Engineering Materials 798 (2019) 212-217. DOI: https://doi.org/10.4028/www.scientific.net/KEM.798. 212
  • [31] A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, M.H. Kim, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics, Materials Chemistry and Physics 143/3 (2014) 1282-1288. DOI: https://doi.org/10.1016/j.matchemphys.2013.11.035
  • [32] S. Manotham, P. Butnoi, N. Lertcumfu, P. Jaita, Effects of sintering temperatures on structural, electrical and mechanical properties of BNKT piezoelectric ceramics, Key Engineering Materials 777 (2018) 60-64. DOI: https://doi.org/10.4028/www.scientific.net/KEM.777. 60
  • [33] S. Manotham, P. Butnoi, P. Jaita, N. Kumar, K. Chokethawai, G. Rujijanagul, D.P. Cann, Large electric field-induced strain and large improvement in energy density of bismuth sodium potassium titanate-based piezoelectric ceramics, Journal of Alloys and Compounds 739 (2018) 457-467. DOI: https://doi.org/10.1016/j.jallcom.2017.12.175
  • [34] M.S. Alkathy, A. Hezam, K.S.D. Manoja, J. Wang, C. Cheng, K. Byrappa, K.C.J. Raju, Effect of sintering temperature on structural, electrical, and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics, Journal of Alloys and Compounds 762 (2018) 49-61. DOI: https://doi.org/10.1016/j.jallcom.2018.05.138
  • [35] Q. Zhou, C. Zhou, H. Yang, C. Yuan, W. Li, Dielectric properties and depolarization temperature of Bi0.5(Na, K)0.5TiO3–BiFeO3 lead-free ceramics, Physica B: Condensed Matter 405/2 (2010) 613-618. DOI: https://doi.org/https://doi.org/10.1016/j.physb.2009.09 .075
  • [36] M. Reda, S.I. El-Dek, M.M. Arman, Improvement of ferroelectric properties via Zr doping in barium titanate nanoparticles, Journal of Materials Science: Materials in Electronics 33 (2022) 16753-16776. DOI: https://doi.org/10.1007/s10854-022-08541-x
  • [37] X. Tian, Z. Wu, Y. Jia, J. Chen, R.K. Zheng, Y. Zhang, H. Luo, Remanent-polarization-induced enhancement of photoluminescence in Pr3+-doped lead-free ferroelectric (Bi0.5Na0.5)TiO3 ceramic, Applied Physics Letters 102/4 (2013) 042907. DOI: https://doi.org/10.1063/1.4790290
  • [38] L. Liu, D. Shi, M. Knapp, H. Ehrenberg, L. Fang, J. Chen, Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3–SrTiO3– (K0.5Na0.5)NbO3 solid solutions, Journal of Applied Physics 116 (2014) 184104. DOI: https://doi.org/10.1063/1.4901549
  • [39] J. Suchanicz, K. Kluczewska-Chmielarz, D. Sitko, G. Jagło, Electrical transport in lead-free Na0.5Bi0.5TiO3 ceramics, Journal of Advanced Ceramics 10 (2021) 152-165. DOI: https://doi.org/10.1007/s40145-020- 0430-5
  • [40] C. He, X. Bai, J. Wang, Y. Liu, Y. Lu, X. Liu, Y. Xiang, Z. Xu, Y. Chen, Structural, Piezoelectric and Dielectric Properties of K0.4Na0.6NbO3-Bi0.5Li0.5ZrO3-CaZrO3 Ternary Lead-Free Piezoelectric Ceramics, Journal of Electronic Materials 49 (2020) 4364-4371. DOI: https://doi.org/10.1007/s11664-020-08174-y
  • [41] N. Truong-Tho, D. Le Vuong, Study on the strain behavior and piezoelectric properties of lead-free Bi0.5(Na0.8K0.2)0.5TiO3 ceramics modified with Sn4+ ions, Journal of Materials Science: Materials in Electronics 32 (2021) 16601-16611. DOI: https://doi.org/10.1007/s10854-021-06215-8
  • [42] S. Manotham, P. Butnoi, P. Jaita, S. Pinitsoontorn, D. Sweatman, S. Eitssayeam, K. Pengpat, G. Rujijanagul, Dielectric and Magnetic Properties of Ba(Fe1/2Ta1/2)O3- BiFeO3 Ceramics, Journal of Electronic Materials 45 (2016) 5948-5955. DOI: https://doi.org/10.1007/s11664-016-4811-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00eeabd9-5daa-4362-bd15-a184e673bd84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.