# A NOTE ON WEAKLY $\varrho$-UPPER CONTINUOUS FUNCTIONS 

KATARZYNA NOWAKOWSKA, MAŁGORZATA TUROWSKA

## Abstract

In the article we present definition and some properties of weakly $\varrho$-upper continuous functions. We find maximal additive and maximal multiplicative families for the class of weakly $\varrho$-upper continuous functions.

## 1. Preliminaries

In the article we apply standard symbols and notations. By $\mathbb{R}$ we denote the set of all real numbers, by $\mathbb{N}$ we denote the set of all positive integers. By $\mathcal{L}$ we denote the family of Lebesgue measurable subsets of the real line. The symbol $\lambda(\cdot)$ stands for the Lebesgue measure on $\mathbb{R}$. In the whole article, $I$ will denote an open interval (not necessarily bounded) with ends $a, b$ and $f$ - a real function defined in $I$. By $\mathcal{A}$ we denote the class of all approximately continuous functions defined in $I$.

Let $E$ be a measurable subset of $\mathbb{R}$ and $x$ be a real number. According to [1], the numbers

$$
\bar{d}^{+}(E, x)=\limsup _{t \rightarrow 0^{+}} \frac{\lambda(E \cap[x, x+t])}{t}
$$

and

$$
\bar{d}^{-}(E, x)=\liminf _{t \rightarrow 0^{+}} \frac{\lambda(E \cap[x-t, x])}{t}
$$

are called the right upper density of $E$ at $x$ and left upper density of $E$ at $x$, respectively. The number

$$
\bar{d}(E, x)=\max \left\{\bar{d}^{+}(E, x), \bar{d}^{-}(E, x)\right\}
$$

is called the upper density of $E$ at $x$.

- Katarzyna Nowakowska - e-mail: nowakowska_k@go2.pl

Pomeranian University in Słupsk.

- Małgorzata Turowska - e-mail: malgorzata.turowska@apsl.edu.pl

Pomeranian University in Słupsk.

Recall the definition of $\varrho$-upper continuous function.
Definition 1. [2] Let $E$ be a measurable subset of $\mathbb{R}$. If $x \in \mathbb{R}$ and $0<\varrho<1$, then we shall say that $x$ is a point of $\varrho$-type upper density of $E$ if $\bar{d}(E, x)>\varrho$.

Definition 2. [2] Let $x \in I$. A real-valued function $f$ defined on $I$ is called $\varrho$-upper continuous at $x$ provided that there is a measurable set $E \subset I$ such that $x$ is a point of $\varrho$-type upper density of $E, x \in E$ and $\left.f\right|_{E}$ is continuous at $x$. If $f$ is $\varrho$-upper continuous at each point of $I$, we say that $f$ is $\varrho$-upper continuous.

By $\mathcal{U C} \mathcal{C}_{\varrho}$ we denote the class of all $\varrho$-upper continuous functions defined in an open interval $I$.

## 2. Weakly $\varrho$-continuous functions

Now, we shall give the basic definitions of this paper.
Definition 3. Let $E$ be a measurable subset of $\mathbb{R}$ and $x \in \mathbb{R}$. If $\varrho \in(0,1)$, then we say that $x$ is a point of weak $\varrho$-type upper density of $E$ if $\bar{d}(E, x) \geq \varrho$.

Definition 4. A real-valued function $f$ defined in I is called weakly $\varrho$-upper continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that $x$ is a point of weak $\varrho$-type upper density of $E, x \in E$ and $\left.f\right|_{E}$ is continuous at $x$. If $f$ is weakly $\varrho$-upper continuous at each point of $I$, we say that $f$ is weakly $\varrho$-upper continuous.

By $w \mathcal{U C} C_{\varrho}$ we denote the class of all weakly $\varrho$-upper continuous functions defined on an open interval $I$.

In an obvious way we define one-sided weak $\varrho$-upper continuity at a point $x$ and $f$ is weakly $\varrho$-upper continuous at $x$ if and only if it is weakly $\varrho$-upper continuous at $x$ on the right or on the left.

Corollary 1. If $0<\varrho_{1}<\varrho_{2}<1, x_{0} \in I$ and $f: I \rightarrow \mathbb{R}$ is weakly $\varrho_{2}$-upper continuous at $x_{0}$, then $f$ is weakly $\varrho_{1}$-upper continuous at $x_{0}$.

Corollary 2. If $0<\varrho<1$ and $f: I \rightarrow \mathbb{R}$ is $\varrho$-upper continuous at some point $x_{0}$ from $I$, then $f$ is weakly $\varrho$-upper continuous at $x_{0}$.

Example 1. Let $\varrho \in(0,1)$. We shall show that there exists $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \in \mathcal{U Z}_{\varrho} \backslash \mathcal{U C}_{\varrho}$.

Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} x_{n}=0$ and $x_{n+1}<x_{n}$ for every $n \geq 1$. For each $n \geq 1$ take any $y_{n} \in\left(x_{n+1}, x_{n}\right)$ such
that $x_{n}-y_{n}=\varrho\left(x_{n}-x_{n+1}\right)$. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ letting

$$
f(x)=\left\{\begin{array}{l}
0 \text { if } x \in(-\infty, 0) \cup \bigcup_{n=1}^{\infty}\left\{x_{n}\right\} \cup\left(x_{1}, \infty\right) \\
1 \text { if } x \in\{0\} \cup \bigcup_{n=1}^{\infty}\left[y_{n}, x_{n}\right) \\
\text { linear on each interval }\left[x_{n+1}, y_{n}\right], n \geq 1
\end{array}\right.
$$

Clearly, $f$ is $\varrho$-upper continuous at every point except at 0 . Take any $\varepsilon>0$. Then

$$
\begin{aligned}
& \lambda\left(\left\{x \in\left[x_{n+1}, y_{n}\right]:|f(x)-1|<\varepsilon\right\}\right)=\varepsilon \lambda\left(\left[x_{n+1}, y_{n}\right]\right)= \\
& \quad=\varepsilon(1-\varrho) \lambda\left(\left[x_{n+1}, x_{n}\right]\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \lambda\left(\left\{x \in\left[0, x_{n}\right]:|f(x)-1|<\varepsilon\right\}\right)= \\
& \quad=\sum_{k=n}^{\infty}\left(\varrho \lambda\left(\left[x_{k+1}, x_{k}\right]\right)+\varepsilon(1-\varrho) \lambda\left(\left[x_{k+1}, x_{k}\right]\right)\right)= \\
& \quad=(\varrho+\varepsilon(1-\varrho)) \sum_{k=n}^{\infty} \lambda\left(\left[x_{k+1}, x_{k}\right]\right)=(\varrho+\varepsilon(1-\varrho)) \lambda\left(\left[0, x_{n}\right]\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \bar{d}(\{x:|f(x)-1|<\varepsilon\}, 0)=\lim _{n \rightarrow \infty} \frac{\lambda\left(\left\{x \in\left[0, x_{n}\right]:|f(x)-1|<\varepsilon\right\}\right)}{\lambda\left(\left[0, x_{n}\right]\right)}= \\
&=\varrho+\varepsilon(1-\varrho)
\end{aligned}
$$

Since $\lim _{\varepsilon \rightarrow 0^{+}} \bar{d}(\{x:|f(x)-1|<\varepsilon\}, 0)=\lim _{\varepsilon \rightarrow 0^{+}}(\varrho+\varepsilon(1-\varrho))=\varrho$, we conclude that $f$ is not $\varrho$-upper continuous at 0 and $f$ is weakly $\varrho$-upper continuous at 0 . Hence $f \in w \mathcal{\mathcal { U }} \mathcal{C}_{\varrho} \backslash \mathcal{U C}_{\varrho}$.

Corollary 3. If $0<\varrho_{1}<\varrho_{2}<1$ and $f: I \rightarrow \mathbb{R}$ is weakly $\varrho_{2}$-upper continuous at some point $x_{0}$ from $I$, then $f$ is $\varrho_{1}$-upper continuous at $x_{0}$.

Example 2. We shall show that if $0<\varrho_{1}<\varrho_{2}<1$, then there is a function $f:(a, b) \rightarrow \mathbb{R}$ such that $f \in \mathcal{U C}_{\varrho_{1}} \backslash w \mathcal{U} \mathcal{C}_{\varrho_{2}}$.

Let $a<0<b$. We can find a sequence $\left(\left[a_{n}, b_{n}\right]\right)_{n \geq 1}$ of pairwise disjoint closed intervals such that $0<b_{n+1}<a_{n}<b_{n}$ for each $n$ and

$$
\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], 0\right)=\frac{\varrho_{1}+\varrho_{2}}{2} .
$$

Let $\left(\left[c_{n}, d_{n}\right]\right)_{n \geq 1}$ be a sequence of pairwise disjoint closed intervals such that $\left[a_{n}, b_{n}\right] \subset\left(c_{n}, d_{n}\right)$ for every $n \geq 1$ and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(\left[c_{n}, d_{n}\right] \backslash\left[a_{n}, b_{n}\right]\right), 0\right)=0$. Put $I_{n}=\left[a_{n}, b_{n}\right], J_{n}=\left[c_{n}, d_{n}\right]$ for every $n \geq 1$. Define a function $f:(a, b) \rightarrow \mathbb{R}$ letting

$$
f(x)=\left\{\begin{array}{l}
0 \quad \text { if } x \in\{0\} \cup \bigcup_{n=1}^{\infty} I_{n}, \\
1 \quad \text { if } x \in(a, 0) \cup \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right] \cup\left[d_{1}, b\right), \\
\text { linear on each interval }\left[c_{n}, a_{n}\right],\left[b_{n}, d_{n}\right], n \geq 1
\end{array}\right.
$$

The function $f$ is continuous at every point except at 0 . If $E=\bigcup_{n=1}^{\infty} I_{n} \cup\{0\}$, then the function $f$ restricted to $E$ is constant, so in particular, it is continuous at zero. Moreover,

$$
\bar{d}(E, 0) \geq \bar{d}^{+}(E, 0)=\bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, 0\right)=\frac{\varrho_{1}+\varrho_{2}}{2}>\varrho_{1} .
$$

Hence $f \in \mathcal{U C}_{\varrho_{1}}$. But

$$
\begin{aligned}
\bar{d}^{+}(\{x: f(x) & <1\}, 0) \leq \bar{d}^{+}\left(\bigcup_{n=1}^{\infty} J_{n}, 0\right) \leq \\
& \leq \bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, 0\right)+\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(J_{n} \backslash I_{n}\right), 0\right)=\frac{\varrho_{1}+\varrho_{2}}{2}<\varrho_{2} .
\end{aligned}
$$

Moreover $\bar{d}^{-}(\{x: f(x)<1\}, 0)=0$. Thus $\bar{d}(\{x: f(x)<1\}, 0)<\varrho_{2}$ and $f$ is not weakly $\varrho_{2}$-upper continuous at 0 . Hence $f \notin w \mathcal{U} \mathcal{C}_{\varrho_{2}}$.
Corollary 4. $\bigcup_{\varrho \in(0,1)} \mathcal{U C}_{\varrho}=\bigcup_{\varrho \in(0,1)} w \mathcal{U C} \varrho_{\varrho}$.
Corollary 5. $\bigcap_{\varrho \in(0,1)} \mathcal{U C}_{\varrho}=\bigcap_{\varrho \in(0,1)} w \mathcal{U C} \mathcal{C}_{\varrho}$.
Definition 5. We say that a real-valued function $f$ defined on an open interval $I$ has Denjoy property at $x_{0} \in I$ if for each $\varepsilon>0$ and $\delta>0$ the set

$$
\left\{x \in\left(x_{0}-\delta, x_{0}+\delta\right):\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}
$$

contains a measurable subset of positive measure. We say that $f$ has Denjoy property if it has Denjoy property at each point $x \in I$.

Immediately from Theorem 2.1 in [2], Remark 2.1 in [2] and Corollary 2 we obtain the following results.

Corollary 6. If $0<\varrho<1$ and $f \in \mathcal{U H}_{\varrho}$, then $f$ is measurable.
Corollary 7. If $0<\varrho<1$ and $f \in \mathcal{U C C}_{\varrho}$, then $f$ has Denjoy property.
The proof of the next corollary follows directly from Theorem 2.4 in [4].
Corollary 8. There exists function $f$ such that $f \in \bigcap_{\varrho \in(0,1)} u \mathcal{U} \mathcal{C}_{\varrho}$ and $f$ does not belong to the Baire class 1 .

We shall need the following lemma.
Lemma 1. [3] If $0<\varrho \leq 1$ and $\left\{E_{n}: n \in \mathbb{N}\right\}$ is a descending family of measurable sets such that $x \in \bigcap_{n=1}^{\infty} E_{n}$ and $\bar{d}\left(E_{n}, x\right) \geq \varrho$ for $n \geq 1$, then there exists a measurable set $E$ such that $\bar{d}(E, x) \geq \varrho, x \in E$, and for each $n \in \mathbb{N}$ there exists $\delta_{n}>0$ for which $E \cap\left[x-\delta_{n}, x+\delta_{n}\right] \subset E_{n}$.

We shall give an equivalent condition of weak $\varrho$-upper continuity at a point.

Theorem 1. If $0<\varrho<1$ and $f: I \rightarrow \mathbb{R}$ is a measurable function, then $f$ is weakly $\varrho$-upper continuous at $x \in I$ if and only if

$$
\bar{d}(\{y \in I:|f(x)-f(y)|<\varepsilon\}, x) \geq \varrho \quad \text { for every } \quad \varepsilon>0 .
$$

Proof. Assume that $f$ is weakly $\varrho$-upper continuous at $x$. Let $E \subset I$ be a measurable set such that $x \in E,\left.f\right|_{E}$ is continuous at $x$ and $\bar{d}(E, x) \geq \varrho$. Since $\left.f\right|_{E}$ is continuous at $x$, for each $\varepsilon>0$ we can find $\delta>0$ such that $[x-\delta, x+\delta] \cap E \subset\{y \in E:|f(x)-f(y)|<\varepsilon\}$. Hence for each $\varepsilon>0$

$$
\begin{array}{r}
\bar{d}(\{y \in I:|f(x)-f(y)|<\varepsilon\}, x) \geq \bar{d}(\{y \in E:|f(x)-f(y)|<\varepsilon\}, x)= \\
=\bar{d}(E, x) \geq \varrho
\end{array}
$$

Finally, assume that for each $\varepsilon>0$,

$$
\bar{d}(\{y \in I:|f(x)-f(y)|<\varepsilon\}, x) \geq \varrho .
$$

By Lemma 1 for sets $E_{n}=\left\{y \in I:|f(x)-f(y)|<\frac{1}{n}\right\}$, where $n \in \mathbb{N}$, we can construct a measurable set $E$ such that $x \in E, \bar{d}(E, x) \geq \varrho$ and for each $n$ there exists $\delta_{n}>0$ for which $E \cap\left[x-\delta_{n}, x+\delta_{n}\right] \subset E_{n}$. The last condition implies that $\left.f\right|_{E}$ is continuous at $x$. It follows that $f$ is weakly $\varrho$-upper continuous at $x$, what was to be shown.

Now we will show that the family of weakly $\varrho$-upper continuous functions is closed under uniform limits, i.e. every limit of uniformly convergent sequence of functions from $w \mathcal{U C} \varrho$ belongs to this family.

Theorem 2. If $0<\varrho<1$ and a sequence $\left(f_{n}\right)_{n \geq 1}$ of weakly $\varrho$-upper continuous functions is uniformly convergent to a function $f$, then $f$ is weakly @-upper continuous.

Proof. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of weakly $\varrho$-upper continuous functions uniformly converges to $f$. Let $x_{0} \in I$ and $\varepsilon>0$. There exists $n_{0} \geq 1$ such that for every $k>n_{0}$ and every $x \in I$ the inequality

$$
\left|f_{k}(x)-f(x)\right|<\frac{\varepsilon}{3}
$$

holds. Fix $n>n_{0}$. Since $f_{n}$ is weakly $\varrho$-upper continuous at $x_{0}$, there exists a measurable set $E \subset I$ such that $x_{0} \in E,\left.f_{n}\right|_{E}$ is continuous at $x_{0}$ and $\bar{d}\left(E, x_{0}\right) \geq \varrho$. Then there exists a positive $\delta$ such that

$$
\left[x_{0}-\delta, x_{0}+\delta\right] \cap E \subset\left\{x \in E:\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}\right\}
$$

Notice that

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|+\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|<\varepsilon
$$

if $x \in\left[x_{0}-\delta, x_{0}+\delta\right] \cap E$. Therefore

$$
\left\{x \in E:\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}\right\} \subset\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}
$$

Hence

$$
\begin{aligned}
& \bar{d}\left(\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \\
& \quad \geq \bar{d}\left(\left\{x \in E:\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}\right\}, x_{0}\right)=\bar{d}\left(E, x_{0}\right)
\end{aligned}
$$

Therefore

$$
\bar{d}\left(\left\{x:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \bar{d}\left(E, x_{0}\right) \geq \varrho
$$

It means that the function $f$ is weakly $\varrho$-upper continuous at $x_{0}$.
Example 3. We shall show that the family of $\varrho$-upper continuous functions is not closed under the operation of uniform convergence.

Define the function $f$ in the same way as in Example 1. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$, $f_{n}=\min \left\{1-\frac{1}{n}, f\right\}$ for each $n \geq 1$. Then, clearly, the sequence $\left(f_{n}\right)_{n \geq 1}$ uniformly converges to $f$ and $f \notin \mathcal{U C} \mathcal{C}_{\varrho}$. Since

$$
\left\{x: f_{n}(x)=1-\frac{1}{n}=f(0)\right\}=\left\{x:|f(x)-1|<\frac{1}{n}\right\}
$$

and $\bar{d}\left(\left\{x:|f(x)-1|<\frac{1}{n}\right\}, 0\right)=\varrho+\frac{1}{n}(1-\varrho)>\varrho$, we infer that $f_{n} \in \mathcal{U} \mathcal{C}_{\varrho}$ for each $n \geq 1$.

## 3. Maximal additive family

Definition 6. Let $\mathcal{F}$ be any family of real valued functions defined on $I$. The set $\mathcal{M}_{a}(\mathcal{F})=\left\{g: \forall_{f \in \mathcal{F}} f+g \in \mathcal{F}\right\}$ is called a maximal additive family for $\mathcal{F}$.

Remark 1. If a zero (constant) function is a member of a family of functions $F$, then $\mathcal{M}_{a}(\mathcal{F}) \subset \mathcal{F}$.

Lemma 2. [3] Let numbers $c$ and $\gamma$ fulfil the inequality $0<c<\gamma<1$. Moreover, let $E$ be a measurable subset of $\mathbb{R}$ with the property $\bar{d}^{+}(E, x)=c$ for some point $x \in \mathbb{R}$. Then there exists a measurable set $H$ such that $E \subset H, \bar{d}^{+}(H, x) \geq \gamma$ and $\bar{d}^{+}(H \backslash E, x) \leq \gamma-c(1-\gamma)$.

The proof of next theorem is based on the proof of Theorem 2.1 in [3], where the maximal additive class for $\varrho$-upper continuous functions is discussed.

Theorem 3. If $0<\varrho<1$, then for each $f \in u \mathcal{\mathcal { C }} \mathcal{C}_{\varrho} \backslash \mathcal{A}$ there exists $g: I \rightarrow \mathbb{R}$ such that $g \in u \mathcal{U C} \mathcal{C}_{\varrho}$ and $f+g \notin u \mathcal{U} \mathcal{C}_{\varrho}$.

Proof. Since $f \notin \mathcal{A}$, there exist $x_{0} \in I$ and $\varepsilon>0$ such that

$$
\bar{d}^{+}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right| \geq \varepsilon\right\}, x_{0}\right)>0
$$

or

$$
\bar{d}^{-}\left(\left\{x \in I:\left|f\left(x_{0}\right)-f(x)\right| \geq \varepsilon\right\}, x_{0}\right)>0
$$

Without loss of generality we may assume that the first inequality holds.
Put $E=\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right| \geq \varepsilon\right\}$ and $c=\bar{d}^{+}\left(E, x_{0}\right)$. Therefore $c>0$. Let $\gamma$ be a real number satisfying conditions $\gamma \geq \varrho, c<\gamma<1$ and $\gamma-c(1-\gamma)<\varrho$. By Lemma 2, there exists a measurable set $H$ such that $E \subset H, \bar{d}^{+}\left(H, x_{0}\right) \geq \gamma$ and $\bar{d}^{+}\left(H \backslash E, x_{0}\right) \leq \gamma-c(1-\gamma)$. Next one can find a sequence $\left(\left[a_{n}, b_{n}\right]\right)_{n \geq 1}$ of closed intervals such that $x_{0}<b_{n+1}<a_{n}<b_{n}$ for each $n \geq 1$ and

$$
\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \backslash H, x_{0}\right)=\bar{d}^{+}\left(H \backslash \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], x_{0}\right)=0
$$

Thus $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], x_{0}\right)=\bar{d}^{+}\left(H, x_{0}\right) \geq \gamma \geq \varrho$.
Let $\left(\left[c_{n}, d_{n}\right]\right)_{n \geq 1}$ be a sequence of pairwise disjoint closed intervals such that $\left[a_{n}, b_{n}\right] \subset\left(c_{n}, d_{n}\right)$ for all $n$ and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(\left[c_{n}, d_{n}\right] \backslash\left[a_{n}, b_{n}\right]\right), x_{0}\right)=0$. Put $I_{n}=\left[a_{n}, b_{n}\right]$ and $K_{n}=\left[c_{n}, d_{n}\right]$ for each $n \geq 1$. Define a function $g:(a, b) \rightarrow \mathbb{R}$ letting

$$
g(x)=\left\{\begin{array}{cl}
0 & \text { if } x \in\left\{x_{0}\right\} \cup \bigcup_{n=1}^{\infty} I_{n}, \\
-f(x)+f\left(x_{0}\right)+\varepsilon & \text { if } x \in\left(a, x_{0}\right) \cup \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right] \cup\left[d_{1}, b\right), \\
\text { linear on each interval }\left[c_{n}, a_{n}\right],\left[b_{n}, d_{n}\right], n \geq 1 .
\end{array}\right.
$$

Since $f \in u \mathcal{U C}_{\varrho}, g$ is weakly $\varrho$-upper continuous at each point except at $x_{0}$. Applying inequality

$$
\bar{d}\left(\left\{x: g(x)=g\left(x_{0}\right)=0\right\}, x_{0}\right) \geq \bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x_{0}\right) \geq \varrho
$$

we conclude that $g$ is weakly $\varrho$-upper continuous at $x_{0}$, too. It means that $g \in u \mathcal{U C}{ }_{\varrho}$.

Now, we shall show that $f+g$ is not weakly $\varrho$-upper continuous at $x_{0}$. Put

$$
F=\left\{x \in I:\left|(f+g)(x)-(f+g)\left(x_{0}\right)\right|<\varepsilon\right\}
$$

For $x \notin \bigcup_{n=1}^{\infty} K_{n} \cup\left\{x_{0}\right\}$, we have $(f+g)(x)-(f+g)\left(x_{0}\right)=\varepsilon$. Therefore $F \subset \bigcup_{n=1}^{\infty} K_{n} \cup\left\{x_{0}\right\}$. If $x \in \bigcup_{n=1}^{\infty} I_{n}$, then $(f+g)(x)-(f+g)\left(x_{0}\right)=f(x)-f\left(x_{0}\right)$ and consequently $\bigcup_{n=1}^{\infty} I_{n} \cap F \subset \bigcup_{n=1}^{\infty} I_{n} \backslash E$. Thus

$$
\begin{aligned}
\bar{d}\left(F, x_{0}\right)= & \bar{d}^{+}\left(F, x_{0}\right) \leq \bar{d}^{+}\left(F \cap \bigcup_{n=1}^{\infty} I_{n}, x_{0}\right)+\bar{d}^{+}\left(F \backslash \bigcup_{n=1}^{\infty} I_{n}, x_{0}\right) \leq \\
\leq \bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n} \backslash E, x_{0}\right) & +\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(K_{n} \backslash I_{n}\right), x_{0}\right)= \\
& =\bar{d}^{+}\left(H \backslash E, x_{0}\right) \leq \gamma-c(1-\gamma)<\varrho
\end{aligned}
$$

It follows that $f+g$ is not weakly $\varrho$-upper continuous at $x_{0}$. Hence $f+g \notin u \mathcal{U} \mathcal{C}_{\varrho}$, which completes the proof.

The proof of the following lemma is identical to the proof of Lemma 2.2 in [3] and we omit it.

Lemma 3. Let $f: I \rightarrow \mathbb{R}, g: I \rightarrow \mathbb{R}$ be weakly $\varrho$-upper continuous at some point $x \in I$, where $0<\varrho<1$. If at least one of those functions is approximately continuous at $x$, then $f+g$ and $f \cdot g$ are weakly $\varrho$-upper continuous at $x$.

Corollary 9. Let $g: I \rightarrow \mathbb{R}$ be weakly $\varrho$-upper continuous at some point $x \in I$, where $0<\varrho<1$. If $f: I \rightarrow \mathbb{R}$ is approximately continuous at $x$, then $f+g$ and $f \cdot g$ are weakly $\varrho$-upper continuous at $x$.

Corollary 10. Let $f: I \rightarrow \mathbb{R}, g: I \rightarrow \mathbb{R}$ be weakly @-upper continuous in $I$, where $0<\varrho<1$. If $D_{a p}(f) \cap D_{a p}(g)=\emptyset$, where $D_{a p}(f)$ denotes the set of all points at which $f$ is not approximately continuous, then $f+g$ and $f \cdot g$ are weakly $\varrho$-upper continuous in $I$.

Theorem 4. If $0<\varrho<1$, then $\mathcal{M}_{a}\left(u \mathcal{\mathcal { L }} \mathcal{C}_{\varrho}\right)=\mathcal{A}$.
Proof. By Theorem 3, we have $w \mathcal{\mathcal { C }} \mathcal{C}_{\varrho} \cap \mathcal{M}_{a}\left(w \mathcal{\mathcal { L }} \mathcal{C}_{\varrho}\right) \subset \mathcal{A}$. By Remark 1, we have the inclusion $\mathcal{M}_{a}\left(w \mathcal{\mathcal { L }} \mathcal{C}_{\varrho}\right) \subset w \mathcal{U C}_{\varrho}$. Therefore $\mathcal{M}_{a}\left(w \mathcal{\mathcal { H }} \mathcal{C}_{\varrho}\right) \subset \mathcal{A}$. Finally, by Lemma 9 , we have $\mathcal{A} \subset \mathcal{M}_{a}\left(u \mathcal{\mathcal { M }} \mathcal{C}_{\varrho}\right)$.

## 4. Maximal multiplicative family

Definition 7. If $\mathcal{F}$ is any family of real valued functions defined on an open interval $I$, then the set $\left\{g: \forall_{f \in \mathcal{F}} f \cdot g \in \mathcal{F}\right\}$ is called a maximal multiplicative family for $\mathcal{F}$ and is denoted by $\mathcal{M}_{m}(\mathcal{F})$.

Remark 2. If a constant function equalled to 1 is a member of a family of functions $\mathcal{F}$, then $\mathcal{M}_{m}(\mathcal{F}) \subset \mathcal{F}$.

Lemma 4. If $0<\varrho<1$ and a measurable function $f: I \rightarrow \mathbb{R}$ is not approximately continuous at some point $x_{0}$ from $I$ for which $f\left(x_{0}\right) \neq 0$, then there exists $g: I \rightarrow \mathbb{R}$ such that $g \in u \mathcal{U} \mathcal{C}_{\varrho}$ and $f \cdot g \notin u \mathcal{U} \mathcal{C}_{\varrho}$.
Proof. Without loss of generality we may assume that $f$ is not approximately continuous from right side at $x_{0}$. Then we can find a positive $\varepsilon$ such that $\varepsilon<\left|f\left(x_{0}\right)\right|$ and

$$
\bar{d}^{+}\left(\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right| \geq \varepsilon\right\}, x_{0}\right)=c>0
$$

Put $E=\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right| \geq \varepsilon\right\}$. Take $\gamma$ such that

$$
\varrho \leq \gamma<1, \quad c<\gamma \quad \text { and } \quad \gamma-c(1-\gamma)<\varrho
$$

By Lemma 2, there exists a measurable set $H$ such that

$$
E \subset H, \quad \bar{d}^{+}\left(H, x_{0}\right) \geq \gamma \quad \text { and } \quad \bar{d}^{+}\left(H \backslash E, x_{0}\right) \leq \gamma-c(1-\gamma)
$$

Similarly as in proof of Lemma 3.1 in [3] we can find a sequence $\left(\left[a_{n}, b_{n}\right]\right)_{n \geq 1}$ of closed intervals such that $x_{0}<b_{n+1}<a_{n}<b_{n}$ for each $n \geq 1$ and

$$
\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \backslash H, x_{0}\right)=\bar{d}^{+}\left(H \backslash \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], x_{0}\right)=0
$$

Then $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right], x_{0}\right)=\bar{d}^{+}\left(H, x_{0}\right) \geq \gamma \geq \varrho$.

Let $\left(\left[c_{n}, d_{n}\right]\right)_{n \geq 1}$ be a sequence of pairwise disjoint closed intervals such that $\left[a_{n}, b_{n}\right] \subset\left(c_{n}, d_{n}\right)$ for all $n$ and $\bar{d}^{+}\left(\bigcup_{n=1}^{\infty}\left(\left[c_{n}, d_{n}\right] \backslash\left[a_{n}, b_{n}\right]\right), x_{0}\right)=0$. Denote now $I_{n}=\left[a_{n}, b_{n}\right], K_{n}=\left[c_{n}, d_{n}\right]$ for each $n \geq 1$. Define a function $g:(a, b) \rightarrow \mathbb{R}$ by

$$
g(x)=\left\{\begin{array}{l}
1 \text { if } x \in\left\{x_{0}\right\} \cup \bigcup_{n=1}^{\infty} I_{n} \cup\left[b_{1}, b\right), \\
0 \quad \text { if } x \in\left(a, x_{0}\right) \cup \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right], \\
\text { linear on each interval }\left[c_{n}, a_{n}\right],\left[b_{n+1}, d_{n+1}\right], n \geq 1 .
\end{array}\right.
$$

Then $g$ is continuous except at $x_{0}$. Moreover,

$$
\bar{d}\left(\{x \in I: g(x)=1\}, x_{0}\right) \geq \bar{d}^{+}\left(\bigcup_{n=1}^{\infty} I_{n}, x_{0}\right)=\bar{d}^{+}\left(H, x_{0}\right) \geq \gamma \geq \varrho
$$

and $g$ restricted to $\{x \in I: g(x)=1\}$ is continuous at $x_{0}$. It follows that $g$ is weakly $\varrho$-upper continuous at $x_{0}$. Therefore $g \in w \mathcal{Z} \mathcal{C}_{\varrho}$.

Moreover, $(f \cdot g)\left(x_{0}\right)=f\left(x_{0}\right)$ and

$$
\left\{x:\left|(f \cdot g)(x)-(f \cdot g)\left(x_{0}\right)\right|<\varepsilon\right\} \cap\left(\left(a, x_{0}\right) \cup \bigcup_{n=1}^{\infty}\left[d_{n+1}, c_{n}\right]\right)=\emptyset
$$

Then

$$
\begin{aligned}
& \bar{d}\left(\left\{x \in I:\left|(f \cdot g)(x)-(f \cdot g)\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \leq \\
& \leq \bar{d}^{+}\left(\left\{x \in \bigcup_{n=1}^{\infty} K_{n}:\left|(f \cdot g)(x)-(f \cdot g)\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)= \\
& \quad=\bar{d}^{+}\left(\left\{x \in \bigcup_{n=1}^{\infty} I_{n}:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)= \\
& \quad=\bar{d}^{+}\left(\left\{x \in H:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right)= \\
& =\bar{d}^{+}\left(\left\{x \in H \backslash E:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \leq \gamma-c(1-\gamma)<\varrho .
\end{aligned}
$$

It implies that $f \cdot g$ is not weakly $\varrho$-upper continuous at $x_{0}$ i.e. $f g \notin w \mathcal{Z} \mathcal{C}_{\varrho}$.

Definition 8. If $0<\varrho<1$, then by $\mathcal{W}(\varrho)$ we shall denote the family of all measurable functions $f: I \rightarrow \mathbb{R}$ such that at each $x_{0} \in D_{a p}(f)$ the following two conditions hold
(W1) $f\left(x_{0}\right)=0$ (in other words $D_{a p}(f) \subset N_{f}$, where $N_{f}=\{x: f(x)=0\}$ );
(W2) for each $\varepsilon>0$ and for each measurable set $F$ such that $F \supset N_{f}$ and $\bar{d}\left(F, x_{0}\right) \geq \varrho$ we have

$$
\bar{d}\left(F \cap\left\{x \in I:\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}, x_{0}\right) \geq \varrho .
$$

Theorem 5. $\mathcal{M}_{m}\left(u \mathcal{H} \mathcal{C}_{\varrho}\right)=\mathcal{W}(\varrho)$ for each $\varrho$ such that $0<\varrho<1$.
Proof. Fix $\varrho$ from the interval $(0,1)$. Let $f \in \mathcal{W}(\varrho)$ and $g \in u \mathcal{H} \mathcal{C}_{\varrho}$. Take any $x_{0} \in I$. Then we can find a measurable set $E$ such that $x_{0} \in E$, $\bar{d}\left(E, x_{0}\right) \geq \varrho$ and $\left.g\right|_{E}$ is continuous at $x_{0}$.

First, we assume that $f$ is approximately continuous at $x_{0}$. Then, by Lemma $9, f \cdot g$ is weakly $\varrho$-upper continuous at $x_{0}$.

Now, we assume that $x_{0} \in D_{a p}(f)$. By condition ( $W 1$ ), we obtain $f\left(x_{0}\right)=0$. Since $\left.g\right|_{E}$ is continuous at $x_{0}$, there exist positive numbers $r$ and $M$ such that $|g(x)|<M$ for $x \in E \cap\left[x_{0}-r, x_{0}+r\right]$. Put $F=E \cup N_{f}$. Then $N_{f} \subset F$ and $\bar{d}\left(F, x_{0}\right) \geq \varrho$. Let $\varepsilon>0$. Then

$$
\begin{aligned}
\{x \in I:|(f \cdot g)(x)|<\varepsilon\} & \cap\left[x_{0}-r, x_{0}+r\right] \supset \\
& \supset F \cap\left\{x \in I:|f(x)|<\frac{\varepsilon}{M}\right\} \cap\left[x_{0}-r, x_{0}+r\right] .
\end{aligned}
$$

By condition ( $W 2$ ), we have

$$
\begin{aligned}
& \bar{d}\left(\{x:|(f \cdot g)(x)|<\varepsilon\}, x_{0}\right) \geq \bar{d}\left(\left\{x:|f(x)|<\frac{\varepsilon}{M}\right\} \cap F, x_{0}\right)= \\
& \quad=\bar{d}\left(\left\{x:|f(x)|<\varepsilon^{\prime}\right\} \cap F, x_{0}\right) \geq \varrho
\end{aligned}
$$

where $\varepsilon^{\prime}=\frac{\varepsilon}{M}$. By Theorem $1, f \cdot g$ is weakly $\varrho$-upper continuous at $x_{0}$. Hence $f \cdot g \in w \mathcal{H} \mathcal{C}_{\varrho}$. In this way, we have proven that $\mathcal{W}(\varrho) \subset \mathcal{M}_{m}\left(u \mathcal{H} \mathcal{C}_{\varrho}\right)$.

Finally, assume that $f \in \mathcal{M}_{m}\left(w \mathcal{\mathcal { C }} \mathcal{C}_{\varrho}\right)$. If $x_{0} \in D_{a p}(f)$, then, by Lemma 4 , we obtain $f\left(x_{0}\right)=0$. Therefore $f$ satisfies the condition ( $W 1$ ). Take any measurable set $F$ such that $N_{f} \subset F$ and $\bar{d}(F, x) \geq \varrho$. Identically as in the proof of Theorem 3.1 in [3] we can find sequences $\left(\left[a_{n}, b_{n}\right]\right)_{n \geq 1},\left(\left[c_{n}, d_{n}\right]\right)_{n \geq 1}$, $\left(\left[a_{n}^{\prime}, b_{n}^{\prime}\right]\right)_{n \geq 1},\left(\left[c_{n}^{\prime}, d_{n}^{\prime}\right]\right)_{n \geq 1},\left(\alpha_{n}\right)_{n \geq 1},\left(\alpha_{n}^{\prime}\right)_{n \geq 1}$ that satisfy conditions listed in that proof.

Define a function $g:(a, b) \rightarrow \mathbb{R}$ by

$$
g(x)= \begin{cases}1, & \text { if } x \in \bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \cup \bigcup_{n=1}^{\infty}\left[a_{n}^{\prime}, b_{n}^{\prime}\right] \cup\left(a, a_{1}^{\prime}\right] \cup\left[b_{1}, b\right) \cup\left\{x_{0}\right\}, \\ \alpha_{n}, & \text { if } x \in\left[d_{n+1}, c_{n}\right], n=1,2, \ldots, \\ \alpha_{n}^{\prime}, & \text { if } x \in\left[d_{n}^{\prime}, c_{n+1}^{\prime}\right], n=1,2, \ldots, \\ \text { linear on each }\left[c_{n}, a_{n}\right],\left[b_{n+1}, d_{n+1}\right],\left[c_{n+1}^{\prime}, a_{n+1}^{\prime}\right],\left[b_{n}^{\prime}, d_{n}^{\prime}\right], n \geq 1 .\end{cases}
$$

It follows directly from the definition of $g$, that $g$ is continuous at each point except at $x_{0}$. Since

$$
\bar{d}\left(\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \cup \bigcup_{n=1}^{\infty}\left[a_{n}^{\prime}, b_{n}^{\prime}\right], x_{0}\right)=\bar{d}\left(F, x_{0}\right)
$$

and $g$ restricted to the set $\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \cup \bigcup_{n=1}^{\infty}\left[a_{n}^{\prime}, b_{n}^{\prime}\right] \cup\left\{x_{0}\right\}$ is constant, $g$ is weakly $\varrho$-upper continuous at $x_{0}$. Thus $g \in u \mathcal{U} \mathcal{C}_{\varrho}$. Hence $f \cdot g \in u \mathcal{U} \mathcal{C}_{\varrho}$. Moreover, $(f \cdot g)\left(x_{0}\right)=0$. Put

$$
E_{\varepsilon}=\left\{x \in I:\left|(f \cdot g)(x)-(f \cdot g)\left(x_{0}\right)\right|<\varepsilon\right\}=\{x \in I:|(f \cdot g)(x)|<\varepsilon\}
$$

if $0<\varepsilon<1$. Since $f \cdot g \in u \mathcal{U C}_{\varrho}, \bar{d}\left(E_{\varepsilon}, x_{0}\right) \geq \varrho$. On the other hand, in the same way as in mentioned proof, we obtain

$$
\begin{aligned}
& \bar{d}^{+}\left(E_{\varepsilon}, x_{0}\right) \leq \bar{d}^{+}\left(\{x \in F:|f(x)|<\varepsilon\}, x_{0}\right) \\
& \bar{d}^{-}\left(E_{\varepsilon}, x_{0}\right) \leq \bar{d}^{-}\left(\{x \in F:|f(x)|<\varepsilon\}, x_{0}\right)
\end{aligned}
$$

if $0<\varepsilon<1$. Thus $\bar{d}\left(\{x \in F:|f(x)|<\varepsilon\}, x_{0}\right) \geq \bar{d}\left(E_{\varepsilon}, x_{0}\right) \geq \varrho$. It follows that the condition $(W 2)$ is satisfied and $f \in \mathcal{W}(\varrho)$.
Corollary 11. If a measurable function $f: I \rightarrow \mathbb{R}$ satisfies the following conditions:
(1) $x_{0} \in D_{a p}(f)$,
(2) $\bar{d}\left(N_{f}, x_{0}\right) \geq \varrho$,
(3) $f\left(x_{0}\right)=0$
for some $x_{0} \in I$ and $\varrho \in(0,1)$, then $f \in \mathcal{W}(\varrho)$.
Corollary 12. $\mathcal{M}_{a}\left(u \mathcal{U} \mathcal{C}_{\varrho}\right)=\mathcal{A} \varsubsetneqq \mathcal{M}_{m}\left(w \mathcal{U} \mathcal{C}_{\varrho}\right)$.

## References

[1] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, Vol. 659, Springer-Verlag Berlin Heidelberg New York, 1978.
[2] S. Kowalczyk, K. Nowakowska, A note on @-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153-158.
[3] S. Kowalczyk, K. Nowakowska, Maximal classes for $\varrho$-upper continuous functions, Real Anal. Exchange 36 (2010/2011), 307-324.
[4] K. Nowakowska, Algebraic properties of $\varrho$-upper continous and $[\lambda, \varrho]$-continuous functions, Ph.D. thesis (in Polish), Technical University in Łódź, 2012.

Received: September 2014
Katarzyna Nowakowska
Pomeranian University in SŁupsk,
Institute of Mathematics,
Ul. Arciszewskiego 22d, $76-200$ SŁupsk, Poland
E-mail address: nowakowska_k@go2.pl
Małgorzata Turowska
Pomeranian University in SŁupsk,
Institute of Mathematics,
Ul. Arciszewskiego 22d, $76-200$ SŁupsk, Poland
E-mail address: malgorzata.turowska@apsl.edu.pl

