PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A triboelectric nanogenerator based on a pendulum-plate wave energy converter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
Rocznik
Tom
Strony
155--161
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • College of Mechanical and Energy Engineering Jimei University Xiamen, 361021
  • Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province Xiamen, 361021
  • Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province Xiamen, 361021 Chin
autor
  • College of Mechanical and Energy Engineering Jimei University Xiamen, 361021
  • Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province Xiamen, 361021
  • Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province Xiamen, 361021 Chin
autor
  • College of Mechanical and Energy Engineering Jimei University Xiamen, 361021
  • Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province Xiamen, 361021
  • Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province Xiamen, 361021 Chin
autor
  • College of Mechanical and Energy Engineering Jimei University Xiamen, 361021
  • Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province Xiamen, 361021
  • Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province Xiamen, 361021 Chin
autor
  • College of Mechanical and Energy Engineering Jimei University Xiamen, 361021
  • Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province Xiamen, 361021 Chin
  • Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province Xiamen, 361021
autor
  • College of Mechanical and Energy Engineering Jimei University Xiamen, 361021
  • Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province Xiamen, 361021
  • Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province Xiamen, 361021 Chin
autor
  • College of Mechanical and Energy Engineering Jimei University Xiamen, 361021
  • Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province Xiamen, 361021
  • Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province Xiamen, 361021 Chin
Bibliografia
  • 1. M. Liu, H. Liu, X. Zheng, H. Chen, L. Wang, and L. Zhang, “Nonlinear PTO effect on performance of vertical axisymmetric wave energy converter using semi-analytical method,” Polish Marit. Res., vol. 24, no. S3, 2017, doi: 10.1515/ pomr-2017-0104.
  • 2. Wave energy in the UK: Status review and future perspectives. Siya Jin, Deborah Greaves. doi.org/10.1016/j.rser.2021.110932.
  • 3. “Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study,” doi.org/10.1016/j. renene.2021.01.058.
  • 4. W. Lai, Y. Xie, and D. Li, “Numerical study on the optimization of hydrodynamic performance of oscillating buoy wave energy converter,” Polish Marit. Res., vol. 28, no. 1, 2021, doi: 10.2478/pomr-2021-0005.
  • 5. F. Taveira-Pinto, G. Iglesias, P. Rosa-Santos, and Z. D. Deng, “Preface to special topic: Marine renewable energy,” J. Renew. Sustain. Energy, 7 (2015), 061601.doi.org/10.1063/1.4939086.
  • 6. Lai W, Xie Y, Li D. Numerical study on the optimization of hydrodynamic performance of oscillating buoy wave energy converter[J]. Polish Maritime Research, 2021.
  • 7. Lai W, Li D, Xie Y. Simulation and experimental study of hydraulic cylinder in oscillating float-type wave energy converter[J]. Polish Maritime Research, 2020.
  • 8. H. Shao et al., “Triboelectric-electromagnetic hybrid generator for harvesting blue energy,” Nano-micro Lett.,vol. 10, no. 54, 2018.
  • 9. F. R. Fan, W. Tang, Y. Yao, J. Luo, C. Zhang, and Z. L. Wang, “Complementary power output characteristics of electro-magnetic generators and triboelectric generators,” Nanotechnology, vol. 25, p. 135402, 2014.
  • 10. G. Zhu et al., “A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification,” Adv. Mater., vol. 26, pp. 3788–96, 2014, doi.org/10.1002/adma.201400021.
  • 11. S. Niu et al., “Theory of sliding-mode triboelectric nanogenerators,” Adv. Mater., vol. 25, no. 43, pp. 6184-6193, 2013, doi.org/10.1002/adma.201302808.
  • 12. X. Zhang et al., “Review of nano-phase effects in high strength and conductivity copper alloys,” Nanotechnology Reviews, vol. 8, no. 1, pp. 383-395, 2019, doi.org/10.1515/ ntrev-2019-0034.
  • 13. T. Jiang et al., “Structural optimization of triboelectric nanogenerator for harvesting water wave energy,” ACS Nano, vol. 9, no. 12, pp. 12562-12572, 2015, doi.org/10.1021/ acsnano.5b06372.
  • 14. L. Xu, et al., “Integrated triboelectric nanogenerator array based on air-driven mem-brane structures for water wave energy harvesting,” Nano Energy, vol. 31, pp, 351-358, 2017, doi.org/10.1016/j.nanoen.2016.11.037.
  • 15. J. Lucas, S. H. Salter, J. Cruz, R. J. M. Taylor, and I. Bryden, “Performance optimisation of a modified Duck through optimal mass distribution,” in Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009. pp. 7-9.
  • 16. J. Liu, P. Fei, J. Zhou, R. Tummala, and Z. L. Wang, “Toward high output-power nanogenerator,” Appl. Phys. Lett., vol. 92, p. 173105, 2008, doi.org/10.1063/1.2918840.
  • 17. Y. Li and Y. H. Yu, “A synthesis of numerical methods for modeling wave energy converter-point absorbers,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 4352-4364, 2012, doi.org/10.1016/j.rser.2011.11.008.
  • 18. Liang X, Jiang T, Liu G, et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy[J]. Energy & Environmental Science, 2020, 13(1): 277-285.
  • 19. Zhang D, Shi J, Si Y, et al. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy[J]. Nano Energy, 2019, 61: 132-140.
  • 20. Huang B, Wang P, Wang L, et al. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview[J]. Nanotechnology Reviews, 2020, 9(1): 716-735.
  • 21. L. Cameron, et al., “Design of the next generation of the Oyster wave energy converter,” in 3rd International Conference on Ocean Energy, ICOE Bilbao, Spain, 2010, vol. 6, p. 1e12.
  • 22. K. Budal and J. Falnes, “Interacting point absorbers with controlled motion. power from sea waves,” Edinburgh, UK, pp. 381-398.
  • 23. M. Folley, MT. J. T. Whittaker, and A. Henry, “The effect of water depth on the performance of a small surging wave energy converter,” Ocean Engineering, vol. 34, no. 8-9, pp. 1265-1274, 2007, doi.org/10.1016/j.oceaneng.2006.05.015.
  • 24. Z. LináWang, “Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives,” Faraday Discussions, vol. 176, pp. 447-458, 2014, doi.org/10.1021/nn404614z.
  • 25. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, and Z. L. Wang, “Quantifying the triboelectric series,” Nat. Commun., vol. 10, p. 1427, 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00e9e6d3-0b2e-4c7c-af5e-2853ff5ff83f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.