PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial intelligence in knowledge capture and transfer: breaking down organizational silos

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effective knowledge management is crucial for organizational success, but persistent challenges exist in capturing, transferring, and utilizing institutional knowledge. This research examines the intersection of artificial intelligence (AI) capabilities with knowledge management practices, focusing on the potential of AI to overcome organizational silos. The study employs a mixed-method approach, including a systematic literature review, content analysis of implementation cases, and comparative analysis. The findings reveal that successful AI integration in knowledge management requires a balanced approach addressing both technical implementation and organizational readiness. Key success factors include robust data governance, strong leadership support, and comprehensive stakeholder engagement. The research provides valuable insights for organizations seeking to leverage AI technologies for improved knowledge management and organizational effectiveness.
Wydawca
Rocznik
Strony
251--259
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Department of Applied Social Sciences, Faculty of Organization and Management, Silesian University of Technology, Poland
  • Joint Doctoral School, Silesian University of Technology, Poland
Bibliografia
  • 1.Alavi, M., Leidner, D. E., 2001. Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues, MIS Quarterly, 25(1), 107-136, DOI: 10.2307/3250961
  • 2.Argote, L., Ingram, P., 2000. Knowledge transfer: A basis for competitive advantage in firms, Organizational Behavior and Human Decision Processes, 82(1), 150-169, DOI: 10.1006/obhd.2000.2893
  • 3.Ben Ayed, M., Ltifi, H., Kolski, C., Alimi, A. M., 2010. A user-centered approach for the design and implementation of KDD-based DSS: A case study in the healthcare domain, Decision Support Systems, 50(1), 64-78, DOI: 10.1016/j.dss.2010.07.003
  • 4.Berman, A., de Fine Licht, K., Carlsson, V. ,2024. Trustworthy AI in the public sector: An empirical analysis of a Swedish labor market decision-support system, Technology in Society, 76, 102471, DOI: 10.1016/j.techsoc.2024.102471
  • 5.Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., Mattos, C. A., 2021. The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions, International Journal of Information Management, 57, 102225, DOI: 10.1016/j.ijinfomgt.2020.102225
  • 6.Choy, K.L., Siu, K.Y., Ho, T.S., Wu, C.H., Lam, H.Y., Tang, V., Tsang, Y.P., 2018. An intelligent case-based knowledge management system for quality improvement in nursing homes, VINE Journal of Information and Knowledge Management Systems, 48(1), DOI: 103-121. 10.1108/VJIKMS-01-2017-0001
  • 7.Czerwinska, K. et al., 2020. Improving quality control of siluminial castings used in the automotive industry. METAL 2020 - 29th Int. Conf. Metall. Mater., 1382-1387. DOI: 10.37904/metal.2020.3661
  • 8.Davenport, T. H., Prusak, L., 1998. Working knowledge: How organizations manage what they know, Harvard Business Press, Boston.
  • 9.Donate, M. J., de Pablo, J. D. S., 2015. The role of knowledge-oriented leadership in knowledge management practices and innovation, Journal of Business Research, 68(2), 360-370, DOI: 10.1016/j.jbusres.2014.06.022
  • 10.Duan, Y., Edwards, J. S., Dwivedi, Y. K., 2019. Artificial intelligence for decision making in the era of Big Data - evolution, challenges and research agenda, International Journal of Information Management, 48, 63-71, DOI: 10.1016/j.ijinfomgt.2019.01.021
  • 11.Gaviria-Marin, M., Merigó, J. M., Baier-Fuentes, H., 2019. Knowledge management: A global examination based on bibliometric analysis, Technological Forecasting and Social Change, 140, 194-220, DOI: 10.1016/j.techfore.2018.07.006
  • 12.Ingaldi, M., Ulewicz, R., 2024. The business model of a circular economy in the innovation and improvement of metal processing, Sustainability, 16(13), 5513, DOI: 10.3390/su161355135513
  • 13.Janasik, D., Jagusiak-Kocik, M., Ulewicz, R., 2023. The use of modern management methods and digital tools in polish manufacturing companies, Scientific Papers of Silesian University of Technology: Organization and Management Series, 179, 163-179, DOI: 10.29119/1641- 3466.2023.179.9
  • 14.Kuzior, A., Sira, M., Brożek, P., 2023a. New technologies as tools supporting innovation management, Scientific Papers of Silesian University of Technology: Organization and Management Series, 188, 279-297, DOI:10.29119/1641-3466.2023.188.16
  • 15.Kuzior, A., Sira, M., Brożek, P., 2023b. Use of Artificial Intelligence in Terms of Open Innovation Process and Management, Sustainability, 15(9), 7205, DOI:10.3390/su15097205
  • 16.Kuzior, A., Sira, M., Brożek, P., 2023c. Ethical implications and social impacts of integrating artificial intelligence into sustainability efforts, Scientific Papers of Silesian University of Technology: Organization and Management Series, 176, 333-346, DOI:10.29119/1641-3466.2023.176.20
  • 17.Kuzior, A., Vasylieva, T., Kuzmenko, O., Koibichuk, V., Brożek, P., 2022. Global digital convergence: impact of cybersecurity, business transparency, economic transformation, and AML efficiency, Journal of Open Innovation: Technology, Market, and Complexity, 8(4), 195, DOI: 10.3390/joitmc8040195
  • 18.Marković, S. et al., 2021. Exploitation characteristics of teeth flanks of gears regenerated by three hard-facing procedures. Materials, 14 (15), art. 4203. DOI: 10.3390/ma14154203
  • 19.Nonaka, I., Takeuchi, H., 1995. The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University Press, New York.
  • 20.Real de Oliveira, E., Rodrigues, P., 2021. A review of literature on human behaviour and artificial intelligence: contributions towards knowledge management, The Electronic Journal of Knowledge Management, 19(2), 165-179, DOI: 10.34190/ejkm.19.2.2459
  • 21.Riege, A., 2005. Three-dozen knowledge-sharing barriers managers must consider, Journal of Knowledge Management, 9(3), 18-35, DOI: 10.1108/13673270510602746
  • 22.Sanzogni, L., Guzman, G., Busch, P., 2017. Artificial intelligence and knowledge management: Questioning the tacit dimension, Prometheus, 35(1), 37-56, DOI: 10.1080/08109028.2017.1364547
  • 23.Skrzypczak-Pietraszek, E., Pietraszek, A.G., 2024. Phytoremediation and Allelopathy as an Element of Sustainable Circular Economy to Prevent Environmental Pollution. Materials Research Proceedings, 45, 140-145. DOI: 10.21741/9781644903315-17
  • 24.Szczyrba, A., Ingaldi, M., 2024. Implementation of the FMEA methods as as support for the HACCP system in the Polish food industry. Management Systems in Production Engineering, 32, 357- 371. DOI: 10.2478/mspe-2024-0034
  • 25.Thakuri, S., Bon, M., Cavus, N., Sancar, N., 2024. Artificial Intelligence on Knowledge Management Systems for Businesses: A Systematic Literature Review, TEM Journal, 13(3), 2146-2155, DOI:10.18421/TEM133-42
  • 26.Trunk, A., Birkel, H., Hartmann, E., 2020. On the current state of combining human and artificial intelligence for strategic organizational decision making, Business Research, 13, 875-919, DOI: 10.1007/s40685-020-00133-x
  • 27.Ulewicz, R. et al., 2013. Structure and mechanical properties of fine-grained steels. Periodica Polytechnica Transportation Engineering, 41(2), 111-115. DOI: 10.3311/PPtr.7110
  • 28.Vuori, V., and Okkonen, J. (2012). Knowledge sharing motivational factors of using an intraorganizational social media platform, Journal of Knowledge Management, 16(4), 592-603. https://doi.org/10.1108/13673271211246167
  • 29.Wang, S., and Noe, R. A. (2010). Knowledge sharing: A review and directions for future research, Human Resource Management Review, 20(2), 115-131, DOI: 10.1016/j.hrmr.2009.10.001
  • 30.Wolf, P., Madsen, E. S., & Steppe, J, 2024. Bridging the theory-practice gap: A genealogical perspective on the most debated knowledge management challenges, Knowledge Management Research & Practice, 1-24, DOI:10.1080/14778238.2024.2379922
  • 31.Wronska, A. et al., 2019. Effect of tool pin length on microstructure and mechanical strength of the FSW joints of Al 7075 metal sheets. Communications - Scientific Letters of the University of Žilina, 21 (3), 40-47.
  • 32.Yeung, C.L., Cheung, C.F., Wang, W.M., Tsui, E., & Lee, W.B., 2016. Managing knowledge in the construction industry through computational generation of semi-fiction narratives, Journal of Knowledge Management, 20(2), 386-414, DOI: 10.1108/JKM-07-2015-0253
  • 33.Zhang, L., Wu, S., & Zhou, D., 2020. A Study on Transitions to Knowledge-Based Service in China's Publishing Industry, Publishing Research Quarterly, 36, 479-486, DOI: 10.1007/s12109-020-09748-8
  • 34.Zheng, T., Grosse, E. H., Morana, S., Glock, C. H., 2024. A review of digital assistants in production and logistics: Applications, benefits, and challenges, International Journal of Production Research, 62(21), 8022-8048, DOI: 10.1080/00207543.2024.2330631
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00e3a0f4-0638-415e-8484-846b76d9f774
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.