PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The off-design performance prediction of axial compressor based on a 2D approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The two-dimensional compressor flow simulation approach has always been a very valuable tool in compressor preliminary design studies, as well as performance predictions. In this context, a general development of the streamline curvature (SLC) method is elucidated firstly. Then a numerical method based on SLC is developed to simulate the internal flow of the compressor according to the development analysis and conclusion. Two certain transonic axial compressors are calculated by this 2D method. The speed lines and span-wise aerodynamic parameters are compared with the experiment data in order to demonstrate the method presented in this paper.
Rocznik
Strony
523--531
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Shanghai JiaoTong University, School of Mechanical Engineering, Shanghai, China
autor
  • Shanghai JiaoTong University, School of Mechanical Engineering, Shanghai, China
autor
  • Shanghai JiaoTong University, School of Mechanical Engineering, Shanghai, China
autor
  • Shanghai JiaoTong University, School of Mechanical Engineering, Shanghai, China
autor
  • Shanghai JiaoTong University, School of Mechanical Engineering, Shanghai, China
autor
  • Shanghai JiaoTong University, School of Mechanical Engineering, Shanghai, China
Bibliografia
  • 1. Arima T.A., 1999, Numerical investigation of transonic axial compressor rotor flow using a low--Reynolds-number k − ε turbulence model, Journal of Turbomachinery, 121, 44-58
  • 2. Aungier R.H., 2003, Axial-Flow Compressor: A Strategy for Aerodynamic Design and Analysis, ASME Press, New York
  • 3. Bloch G.S., Copenhaver W.W., O’Brien W.F., 1999, A shock loss model for supersonic compressor cascades, ASME Journal of Turbomachinery, 121, 28-35
  • 4. Boyer K.M., 2003, An improved streamline curvature approach for off-design analysis of transonic axial compression systems, ASME Journal of Turbomachinery, 125, 475-481
  • 5. Cetin M., Ucer A.S., Hirsch C., Serovy G.K., 1987, Application of modified loss and deviation correlations to transonic axial compressors, AGRAD Report, paper AGRAD-R-745
  • 6. Creveling H.F., Carmody R.H., 1968, Axial-flow compressor computer program for calculating off-design performance, NASA-CR-72472
  • 7. Denton J.D., Dawes W.N., 1999, Computational fluid dynamics for turbomachinery design, Proceedings of the Institution of Mechanical Engineers, Journal of Mechanical Engineering Science, 213, C2
  • 8. Hearsey R.M., 1994, Program HT0300 NASA 1994 Version, The Boeing Company, paper D6-81569TN
  • 9. Johnsen I.A., Bullock R.O., 1965, Aerodynamic Design of Axial-Flow Compressors, NASA
  • 10. Koch C.C., Smith L.H., 1976, Loss sources and magnitudes in axial-flow compressors, ASME Journal of Engineering for Power, 98, 411-424
  • 11. König W.M, Henneck D.K., Fottner L., 1994a, Improved blade profile loss and deviation angle models for advanced transonic compressor bladings: Part I: A model for subsonic flow, Journal of Turbomachinery, 117, 81-87
  • 12. König W.M, Henneck D.K., Fottner L., 1974b, Improved blade profile loss and deviation angle models for advanced transonic compressor bladings: Part II: A model for supersonic flow, Journal of Turbomachinery, 118, 73-80
  • 13. Lieblein S., 1957, Analysis of experimental low-speed loss and stall characteristics of two-dimensional compressor blade cascades, NASA Research Memorandum, paper NACA-RM-E57A28
  • 14. Lieblein S., 1959, Loss and stall analysis of compressor cascades, Journal of Basic Engineering, 81, 387-400
  • 15. Lieblein S., Roudebush W.H., 1956, Theoretical loss relations for low-speed two dimensional-cascade flow, NASA Technical Note, paper NACA-TN-3662
  • 16. Milan V.P., Alexander W., Milan B.B., 2009, Development and validation of a new universal through flow method for axial compressors, Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air, Orlando, Florida, USA, Paper GT 2009-59938
  • 17. Miller G.R., Lewis G.W., Hartmann M.J., 1961, Shock losses in transonic rotor rows, ASME Journal of Engineering for Power, 83, 235-242
  • 18. Pachidis V., Pilidis P., Templalexis I., Alexander T., Kotsiopoulos P., 2006, Prediction of engine performance under compressor inlet flow distortion using streamline curvature, Proceedings ASME Turbo Expo, Power For Land, Sea and Air, Barcelona, Spain, Paper GT2006-90806
  • 19. Royce D.M., Lonnie R., 1980, Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 2.05, NASA Paper, paper NASA-TP-1659
  • 20. Schwenk F.C., Lewis G.W., Hartman M.J., 1957, A preliminary analysis of the magnitude of shock losses in transonic compressors, NACA RM E57A30
  • 21. Swan W.C., 1961, A practical method of predicting transonic compressor performance, ASME Journal of Engineering for Power, 86, 322-330
  • 22. Templalexis I., Pilidis P., Pachidis V., Kotsiopoulos P., 2006, Development of a 2D compressor streamline curvature code, Proc. ASME Turbo Expo, Power For Land, Sea and Air, Barcelona, Spain, Paper GT2006-90867
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00e07fd7-bd50-46f5-aac3-231dc3a80b0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.