PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Operationalising automation transparency for maritime collision avoidance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automation transparency is a means to provide understandability and predictability of autonomous systems by disclosing what the system is currently doing, why it is doing it, and what it will do next. To support human supervision of autonomous collision avoidance systems, insight into the system’s internal reasoning is an important prerequisite. However, there is limited knowledge regarding transparency in this domain and its relationship to human supervisory performance. Therefore, this paper aims to investigate how an information processing model and a cognitive task analysis could be used to drive the development of transparency concepts. Also, realistic traffic situations, reflecting the variation in collision type and context that can occur in real-life, were developed to empirically evaluate these concepts. Together, these activities provide the groundwork for exploring the relation between transparency and human performance variables in the autonomous maritime context.
Twórcy
  • DNV-GL, Akershus, Høvik, Norway
  • University of South-Eastern Norway, Borre, Norway
autor
  • University of South-Eastern Norway, Borre, Norway
  • Memorial University of Newfoundland, NL, St. John’s, Canada
  • DNV-GL, Akershus, Høvik, Norway
autor
  • University of South-Eastern Norway, Borre, Norway
Bibliografia
  • [1] L. Kretschmann, H. C. Burmeister, and C. Jahn, “Analyzing the economic benefit of unmanned autonomous ships: An exploratory cost‐comparison between an autonomous and a conventional bulk carrier,” Research in Transportation Business and Management, vol. 25, pp. 76–86, 2017, doi: 10.1016/j.rtbm.2017.06.002.
  • [2] I. Kurt and M. Aymelek, “Operational and economic advantages of autonomous ships and their perceived impacts on port operations,” Marit Econ Logist, vol. 24, no. 2, pp. 302–326, Jun. 2022, doi: 10.1057/s41278‐022‐ 00213‐1.
  • [3] K. Wróbel, J. Montewka, and P. Kujala, “Towards the assessment of potential impact of unmanned vessels on maritime transportation safety,” Reliab Eng Syst Saf, vol. 165, pp. 155–169, 2017, doi: 10.1016/j.ress.2017.03.029.
  • [4] Kongsberg, “Kongsberg maritime and Massterly to equip and operate two zero‐emission autonomous vessels for ASKO,” Sep. 01, 2020. https://www.kongsberg.com/maritime/about‐us/newsand‐ media/news‐archive/2020/zero‐emissionautonomous‐ vessels/ (accessed Nov. 18, 2020).
  • [5] Yara International, “Yara Birkeland,” 2021. https://www.yara.com/news‐and‐media/medialibrary/ press‐kits/yara‐birkeland‐press‐kit/ (accessed Jan.02, 2023).
  • [6] DNV, “DNVGL‐CG‐0264: Autonomous and remotely operated ships.” 2018. [Online]. Available:http://rules.dnvgl.com/docs/pdf/dnvgl/cg/2018‐09/dnvgl‐cg‐0264.pdf.
  • [7] IMO, Resolution A.1047(27) Principles of safe manning.2011.
  • [8] IMO, “Guidelines for the approval of alternatives and equivalents as provided for in various IMO instruments,” MSC.1/Circ.1455, Jun. 2013.
  • [9] K. Aylward, R. Weber, M. Lundh, S. N. MacKinnon, and J. Dahlman, “Navigators’ views of a collision avoidance decision support system for maritime navigation,” J. Navigation, pp. 1–14, Sep. 2022, doi:10.1017/S0373463322000510.
  • [10] E. Hannaford, P. Maes, and E. Van Hassel, “Autonomous ships and the collision avoidance regulations: a licensed deck officer survey,” WMU J Marit Affairs, vol. 21, no. 2, pp. 233–266, Jun. 2022, doi:10.1007/s13437‐022‐00269‐z.
  • [11] M. A. Ramos, I. B. Utne, and A. Mosleh, “Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events,” Saf Sci, vol. 116, pp. 33–44, 2019, doi: 10.1016/j.ssci.2019.02.038.
  • [12] K. van de Merwe, S. C. Mallam, Ø. Engelhardtsen, and S. Nazir, “Exploring navigator roles and tasks in transitioning towards supervisory control of autonomous collision avoidance systems,” J. Phys.: Conf. Ser., vol. 2311, no. 1, p. 012017, Jul. 2022, doi: https://doi.org/10.1088/1742‐6596/2311/1/012017.
  • [13] S. N. Mackinnon, Y. Man, M. Lundh, and T. Porathe, “Command and control of unmanned vessels: Keeping shore based operators in‐the‐loop,” 18th International Conference on Ships and Shipping Research, NAV 2015, pp. 612–619, 2015.
  • [14] K. van de Merwe, S. Mallam, Ø. Engelhardtsen, and S. Nazir, “Supporting human supervision in autonomous collision avoidance through system transparency: a structured and systematic approach,” under review.
  • [15] M. R. Endsley, “From Here to Autonomy: Lessons Learned from Human‐Automation Research,” Hum Factors, vol. 59, no. 1, pp. 5–27, 2017, doi: 10.1177/0018720816681350.
  • [16] M. R. Endsley, “Supporting Human‐AI Teams:Transparency, explainability, and situation awareness,” Computers in Human Behavior, vol. 140, p. 107574, Mar. 2023, doi: 10.1016/j.chb.2022.107574.
  • [17] J. Y. C. Chen, K. Procci, M. Boyce, J. Wright, A. Garcia, and M. J. Barnes, “Situation Awareness‐Based Agent Transparency,” U.S. Army Research Laboratory, Aberdeen Proving Ground, ARL‐TR‐6905, Apr. 2014. doi: 10.21236/ADA600351.
  • [18] J. Y. C. Chen, S. G. Lakhmani, K. Stowers, A. R. Selkowitz, J. L. Wright, and M. J. Barnes, “Situation awareness‐based agent transparency and humanautonomy teaming effectiveness,” Theor Issues Ergon Sci, vol. 19, no. 3, pp. 259–282, May 2018, doi: 10.1080/1463922X.2017.1315750.
  • [19] M. R. Endsley, B. Bolté, and D. G. Jones, Designing for situation awareness: an approach to user‐centered design. London ; New York: Taylor & Francis, 2003.
  • [20] A. Bhaskara, M. Skinner, and S. Loft, “Agent Transparency: A Review of Current Theory and Evidence,” IEEE Trans Hum Mach Syst, vol. 50, no. 3, pp. 215–224, Jun. 2020, doi: 10.1109/THMS.2020.2965529.
  • [21] F. Rajabiyazdi and G. A. Jamieson, “A Review of Transparency (seeing‐into) Models,” in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2020, pp. 302–308. doi: 10.1109/SMC42975.2020.9282970.
  • [22] K. van de Merwe, S. Mallam, and S. Nazir, “Agent Transparency, Situation Awareness, Mental Workload, and Operator Performance: A Systematic Literature Review,” Hum Factors, p. 00187208221077804, Mar. 2022, doi: 10.1177/00187208221077804.
  • [23] K. van de Merwe, S. Mallam, Ø. Engelhardtsen, and S. Nazir, “Supporting human supervisory performance through information disclosure: establishing transparency requirements for maritime collision avoidance,” in Proceedings of the Human Factors Society Annual Meeting, Orlando, FL, submitted.
  • [24] R. Parasuraman, T. B. Sheridan, and C. D. Wickens, “A model for types and levels of human interaction with automation,” IEEE Trans Syst Man Cybern, vol. 30, no. 3, pp. 286–297, May 2000, doi: 10.1109/3468.844354.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00de6176-3b13-4364-a64a-3176c05a4469
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.