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Abstract. In this paper we study a class of two-point boundary value systems. Using very
recent critical points theorems, we establish the existence of one non-trivial solution and
infinitely many solutions of this problem, respectively.

Keywords: Neumann problems, weak solutions, critical points, (p1, . . . , pn)-Laplacian.

Mathematics Subject Classification: 35J65, 35J60, 47J30, 58E05.

1. INTRODUCTION

In this paper, we study the Neumann boundary value problems:

−(|u′1(x)|p1−2u′1(x))′ + |u1(x)|p1−2u1(x) = λFu1(x, u1, . . . , um), x ∈ (a, b),

−(|u′2(x)|p2−2u′2(x))′ + |u2(x)|p2−2u2(x) = λFu2
(x, u1, . . . , um), x ∈ (a, b),

. . .

−(|u′m(x)|pm−2u′m(x))′ + |um(x)|pm−2um(x) = λFum(x, u1, . . . , um), x ∈ (a, b),

u′i(a) = u′i(b) = 0,

(Pλ)
where pi > 1 are constants, for 1 ≤ i ≤ m, λ is a positive parameter,
F : [a, b]× Rm → R is a function such that F (., t1, . . . , tm) is measurable in [a, b] for
all (t1, . . . , tm) ∈ Rm, F (x, ., . . . , .) is C1 in Rm for every x ∈ [a, b] and for every % > 0,

sup
|(t1,...,tm)|≤%

m∑
i=1

|Fti(x, t1, . . . , tm)| ∈ L1([a, b]),

and Fui denotes the partial derivative of F with respect to ui for 1 ≤ i ≤ m.
In the last decade or so, many authors applied variational methods to study the

existence or multiplicity solutions of the Neumann problem of its variations; see, for
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example, [6, 7, 9–13] and the references therein. We note that the main tools in these
cited papers are several critical point theorems due to Bonanno [3], Bonanno and
Bisci [4], Bonanno and Marano [8]. A Neumann boundary value problem for a class
of gradient systems has already been studied by Afrouzi, Hadjian and Heidarkhani
[1] and Hedarkhani and Tian [14] in the ODE case and Afrouzi, Heidarkhani and
O’Regan [2] in the PDE case. In that papers at least three solutions are established.
The aim of this article is to prove the existence of at least one non-trivial solution and
infinitely many solutions for (Pλ) for appropriate values of the parameter λ belonging
to a precise real interval. Our motivation comes from the recent paper [4,10]. We want
to systematically study a class of gradient systems under a Neumann boundary using
Bonanno’s critical point theorems. For basic notation and definitions, and also for a
thorough account of the subject, we refer the reader to [15,16].

2. PRELIMINARIES AND BASIC NOTATION

First we recall Bonanno’s critical point theorems which is our main tool to transfer
the question of existence of weak solutions of (Pλ) to the existence of critical points
of the Euler functional.

For a given non-empty set X, and two functionals Φ,Ψ : X → R, we define the
following two functions:

β(r1, r2) = inf
v∈Φ−1((r1,r2))

supu∈Φ−1((r1,r2)) Ψ(u)−Ψ(v)

r2 − Φ(v)
,

ρ(r1, r2) = sup
v∈Φ−1((r1,r2))

Ψ(v)− supu∈Φ−1((−∞,r1)) Ψ(u)

Φ(v)− r1

for all r1, r2 ∈ R, r1 < r2.

Theorem 2.1 ([3, Theorem 5.1]). Let X be a reflexive real Banach space, Φ : X → R
be a sequentially weakly lower semicontinuous, coercive and continuously Gâteaux
differentiable functional whose Gâteaux derivative admits a continuous inverse on X∗
and Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact. Put Iλ = Φ−λΨ and assume that there are r1, r2 ∈ R, r1 < r2,
such that

β(r1, r2) < ρ(r1, r2).

Then, for each λ ∈
(

1
ρ(r1,r2) ,

1
β(r1,r2)

)
there is u0,λ ∈ Φ−1((r1, r2)) such that

Iλ(u0,λ) ≤ Iλ(u) for each u ∈ Φ−1((r1, r2)) and I ′λ(u0,λ) = 0.

Theorem 2.2 ([4, Theorem 2.1]). Let X be a reflexive real Banach space, let Φ,Ψ :
X → R be two Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous and coercive and Ψ is sequentially weakly upper semicontinuous.
For every r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1((−∞,r))

(
supv∈Φ−1((−∞,r)) Ψ(v)

)
−Ψ(u)

r − Φ(u)
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and
γ := lim inf

r→+∞
ϕ(r).

Under the above assumptions if γ < +∞ then, for each λ ∈
(

0, 1
γ

)
, the following

alternative holds:
either
(b1) Iλ possesses a global minimum,
or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such that
limn→+∞ Φ(un) = +∞.

Let us introduce notation that will be used later. Let Yi be the Sobolev space
W 1,pi([a, b]) endowed with the norm

‖u‖pi :=

 b∫
a

|u′(x)|pidx+

b∫
a

|u(x)|pidx

1/pi

,

and let
ki = 2(pi−1)/pi max{(b− a)−1/pi , (b− a)(pi−1)/pi},

we recall the following inequality which we use in the sequel

|u(x)| ≤ ki‖u‖pi (2.1)

for all u ∈ Yi, and for all x ∈ [a, b]. Let K = max{kpii }, for 1 ≤ i ≤ m. Here and in
the sequel, X := Y1 × · · · × Ym.

We say that u = (u1, . . . , um) is a weak solution to the (Pλ) if
u = (u1, . . . , um) ∈ X and

m∑
i=1

b∫
a

(
|u′i(x)|pi−2u′i(x)v′i(x) + |ui(x)|pi−2ui(x)vi(x)

)
dx−

− λ
m∑
i=1

b∫
a

Fui(x, u1, . . . , um)vi(x)dx = 0

for every v = (v1, . . . , vm) ∈ X. For γ > 0 we denote the set

Θ(γ) =
{

(t1, . . . , tm) ∈ Rm :
m∑
i=1

|ti|pi
pi
≤ γ

Πm
i=1pi

}
. (2.2)

Let

Φ(u) =

m∑
i=1

‖ui‖pipi
pi

, (2.3)

Ψ(u) =

b∫
a

F (x, u1(x), . . . , um(x))dx. (2.4)
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It is well known that Φ and Ψ are well defined and continuously differentiable func-
tionals whose derivatives at the point u = (u1, . . . , um) ∈ X are the functionals
Φ′(u),Ψ′(u) ∈ X∗, given by

Φ′(u)(v) =

m∑
i=1

b∫
a

(
|u′i(x)|pi−2u′i(x)v′i(x) + |ui(x)|pi−2ui(x)vi(x)

)
dx,

Ψ′(u)(v) =

b∫
a

m∑
i=1

Fui(x, u1(x), . . . , um(x))vi(x)dx

for every v = (v1, . . . , vm) ∈ X, respectively. Moreover, Φ is sequentially weakly
lower semicontinuous, Φ′ admits a continuous inverse on X∗ as well as Ψ is se-
quentially weakly upper semicontinuous. Furthermore, Ψ′ : X → X∗ is a compact
operator. Indeed, it is enough to show that Ψ′ is strongly continuous on X. For
this, for fixed (u1, . . . , um) ∈ X, let (u1n, . . . , umn) → (u1, . . . , um) weakly in X
as n → +∞, then we have (u1n, . . . , umn) converges uniformly to (u1, . . . , um) on
[a, b] as n → +∞ (see [16]). Since F (x, ., . . . , .) is C1 in Rm for every x ∈ [a, b],
the derivatives of F are continuous in Rm for every x ∈ [a, b], so for 1 ≤ i ≤ m,
Fui(x, u1n, . . . , umn) → Fui(x, u1, . . . , um) strongly as n → +∞ which follows
Ψ′(u1n, . . . , umn)→ Ψ′(u1, . . . , um) strongly as n→ +∞. Thus we proved that Ψ′ is
strongly continuous on X, which implies that Ψ′ is a compact operator by Proposi-
tion 26.2 of [16].

3. RESULTS

Before our proof, we first list nonlinear term F which satisfies the following hypotheses,
where µ1, µ2 and ν are some constants.

(H1) F (x, 0, . . . , 0) = 0 for a.e. x ∈ [a, b],
(H2) aν(µ2) < aν(µ1), where

aν(µ) := KΠm
i=1pi

b∫
a

sup(t1,...,tm)∈Θ(µ) F (x, t1, . . . , tm)dx−
b∫
a

F (x, ν, . . . , ν)dx

µ−K
∑m
i=1(Πm

j=1,j 6=ipj)ν
pi

,

(H3) ∫ b
a

sup(t1,...,tm)∈Θ(µ) F (x, t1, . . . , tm)dx

µ
<

∫ b
a
F (x, ν, . . . , ν)dx

K
∑m
i=1(Πm

j=1,j 6=ipj)ν
pi
,

(H4)

lim inf
µ→+∞

∫ b
a

sup(t1,...,tm)∈Θ(µ) F (x, t1, . . . , tm)dx

µ
<

<
1

KΠm
i=1pi(b− a)

lim sup
|t1|→+∞,...,|tm|→+∞

∫ b
a
F (x, t1, . . . , tm)dx∑m

i=1
|ti|pi
pi

.
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3.1. ONE NONTRIVIAL SOLUTION

We formulate our main result as follows:

Theorem 3.1. Assume that there exist a non-negative constant c1 and two positive
constants c2 and d with

c1 < K(b− a)

m∑
i=1

(Πm
j=1,j 6=ipj)d

pi < c2

such that (H1) and (H2) are satisfies. Then, for each λ ∈ ( 1
ad(c1) ,

1
ad(c2) ), system

(Pλ) admits at least one non-trivial weak solution u0 = (u01, . . . , u0m) ∈ X such that

c1
KΠm

i=1pi
<

m∑
i=1

‖u0i‖pipi
pi

<
c2

KΠm
i=1pi

.

Proof. To apply Theorem 2.1 to our problem, we introduce the functionals
Φ,Ψ : X → R for each u = (u1, . . . , un) ∈ X, as (2.3) and (2.4). Moreover, Φ is
sequentially weakly lower semicontinuous, Φ′ admits a continuous inverse on X∗ as
well as Ψ′ : X → X∗ is a compact operator. Set w(x) = (w1(x), . . . , wm(x)) such that
for 1 ≤ i ≤ m,

wi(x) = d

r1 = c1
KΠmi=1pi

and r2 = c2
KΠmi=1pi

. It is easy to verify that w = (w1, . . . , wm) ∈ X, and
in particular, one has

‖wi‖pipi = (b− a)dpi

for 1 ≤ i ≤ m. So, from the definition of Φ, we have

Φ(w) = (b− a)

m∑
i=1

dpi

pi
.

From the conditions c1 < K
∑m
i=1(Πm

j=1,j 6=ipj)(b− a)dpi < c2, we obtain

r1 < Φ(w) < r2.

Moreover, from (2.1) one has

sup
x∈[a,b]

|ui(x)|pi ≤ kpii ‖ui‖
pi
pi

and
sup
x∈[a,b]

|ui(x)|pi ≤ K‖ui‖pipi

for each u = (u1, . . . , um) ∈ X, so from the definition of Φ, we observe that

Φ−1((−∞, r2)) = {(u1, . . . , un) ∈ X : Φ(u1, . . . , un) < r2} =

=
{

(u1, . . . , un) ∈ X :

m∑
i=1

‖ui‖pipi
pi

< r2

}
⊆

⊆
{

(u1, . . . , un) ∈ X :

m∑
i=1

|ui(x)|pi
pi

≤ c2
Πm
i=1pi

for all x ∈ [a, b]

}
,
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from which it follows

sup
(u1,...,um)∈Φ−1((−∞,r2))

Ψ(u) = sup
(u1,...,um)∈Φ−1((−∞,r2))

b∫
a

F (x, u1(x), . . . , um(x))dx ≤

≤
b∫
a

sup
(t1,...,tm)∈Θ(c2)

F (x, t1, . . . , tm)dx.

Since for 1 ≤ i ≤ m, for each x ∈ [a, b], the condition (A1) ensures that

β(r1, r2) ≤
supu∈Φ−1((−∞,r2)) Ψ(u)−Ψ(w)

r2 − Φ(w)
≤

≤

b∫
a

sup(t1,...,tm)∈Θ(c2) F (x, t1, . . . , tm)dx−Ψ(w)

r2 − Φ(w)
≤ ad(c2).

On the other hand, by similar reasoning as before, one has

ρ(r1, r2) ≥
Ψ(w)− supu∈Φ−1((−∞,r1)) Ψ(u)

Φ(w)− r1
≥

≥
Ψ(w)−

b∫
a

sup(t1,...,tm)∈Θ(c1) F (x, t1, . . . , tm)dx

Φ(w)− r1
≥ ad(c1).

Hence, from Assumption (A2), one has β(r1, r2) < ρ(r1, r2). Therefore, from Theo-
rem 2.1, taking into account that the weak solutions of the system (Pλ) are exactly
the solutions of the equation Φ′(u)− λΨ′(u) = 0, we have the conclusion.

Now we point out the following consequence of Theorem 3.1.

Theorem 3.2. Suppose that there exist two positive constants c and d with

c > K(b− a)

m∑
i=1

(Πm
j=1,j 6=ipj)d

pi

such that (H1) and (H3) hold. Then, for each

λ ∈

(
K(b− a)

∑m
i=1(Πm

j=1,j 6=ipj)d
pi

b∫
a

F (x, d, . . . , d)dx

,
c

b∫
a

sup(t1,...,tm)∈Θ(c) F (x, t1, . . . , tm)dx

)
,

system (Pλ) admits at least one non-trivial weak solution u0 = (u01, . . . , u0n) ∈ X
such that

m∑
i=1

‖u0i‖pi∞
pi

<
c

KΠm
i=1pi

.
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Proof. The conclusion follows from Theorem 3.1, by taking c1 = 0 and c2 = c. Indeed,
owing to our assumptions, one has

ad(c2) = KΠm
i=1pi

b∫
a

sup(t1,...,tm)∈Θ(c) F (x, t1, . . . , tm)dx−
b∫
a

F (x, d, . . . , d)dx

c−K(b− a)
∑m
i=1(Πm

j=1,j 6=ipj)d
pi

≤

≤ KΠm
i=1pi

b∫
a

sup(t1,...,tm)∈Θ(c) F (x, t1, . . . , tm)dx−

b∫
a

sup(t1,...,tm)∈Θ(c) F (x,t1,...,tm)dx

c
K

∑m
i=1

(Πm
j=1,j 6=ipj)dpi

c−K(b− a)
∑m
i=1(Πm

j=1,j 6=ipj)d
pi

=

=

b∫
a

sup(t1,...,tm)∈Θ(c) F (x, t1, . . . , tm)dx

c
.

On the other hand, taking Assumption (A1) into account, one has

b∫
a

F (x, d, . . . , d)dx

K(b− a)
∑m
i=1(Πm

j=1,j 6=ipj)d
pi

= ad(c1).

Moreover, since
sup
x∈[a,b]

|ui(x)|pi ≤ K‖ui‖pipi

for each u = (u1, . . . , um) ∈ X, an easy computation ensures that

m∑
i=1

‖u0i‖pi∞
pi

<
c

KΠm
i=1pi

whenever Φ(u) < r2. Now, owing to Assumption (A3), it is sufficient to invoke Theo-
rem 3.1 to conclude the proof.

3.2. INFINITY MANY SOLUTIONS

Theorem 3.3. Assume that (H1) and (H4) hold. Then, for every λ ∈ Λ := (λ1, λ2),
where

λ1 =
(b− a)

lim sup|t1|→+∞,...,|tm|→+∞

∫ b
a
F (x,t1,...,tm)dx∑m

i=1
|ti|

pi

pi

and
λ2 =

1

KΠm
i=1 lim infµ→+∞

∫ b
a

sup(t1,...,tm)∈Θ(µ) F (x,t1,...,tm)dx

µ

,

the problem (Pλ) admits an unbounded sequence of weak solutions which is unbounded
in X.
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Proof. Our goal is to apply Theorem 2.2. Now, as has been pointed out before, the
functionals Φ and Ψ satisfy the regularity assumptions required in Theorem 2.2. Let
{cn} be a real sequence such that limn→+∞ cn = +∞ and

lim inf
n→+∞

b∫
a

sup(t1,...,tm)∈Θ(cn) F (x, t1, . . . , tm)dx

cn
= A. (3.1)

Taking into account (2.1) for every u ∈ X one has

|u(x)| ≤ K‖u‖pi .

Also note
m∑
i=1

|ui(x)|pi
pi

≤ K

(
m∑
i=1

‖ui(x)‖pipi
pi

)
.

Hence, an easy computation ensures that
∑m
i=1 u ≤ cn when ever u ∈ Φ−1((−∞, rn)),

where

rn =
1

K

cn
Πm
i=1pi

.

Taking into account
∥∥u0

i

∥∥
pi

= 0 (where u0
i (x) = 0 for every x ∈ [a, b]) and that∫ b

a
F (t, 0, . . . , 0) dx = 0 for all x ∈ [a, b], for every n large enough, one has

ϕ(rn) = inf
u∈Φ−1((−∞,rn))

(
supv∈Φ−1((−∞,rn)) Ψ(v)

)
−Ψ(u)

rn − Φ(u)
=

= inf
m∑
i=1

‖ui‖
pi
pi

pi
<rn

sup∑m
i=1

‖vi‖
pi
pi

pi
<rn

b∫
a

F (t, v1(x), . . . , vm(x)) dx−
b∫
a

F (t, u1(x), . . . , um) dx

rn −
m∑
i=1

‖ui‖
pi
pi

pi

≤

≤

sup∑m
i=1

‖vi‖
pi
pi

pi
<rn

b∫
a

F (t, v1(x), . . . , vm(x)) dx

rn
≤

≤ KΠm
i=1pi lim inf

n→+∞

b∫
a

sup(t1,...,tm)∈Θ(cn) F (x, t1, . . . , tm)dx

cn
.

Therefore, since from assumption (H4) one has A < +∞, we obtain

γ = lim inf
n→+∞

ϕ(rn) ≤ KΠm
i=1piA < +∞. (3.2)
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Now, fix λ ∈ (λ1, λ2) and let us verify that the functional Iλ is unbounded from below.
Let {ξi,n} be m be positive real sequences such that limn→+∞

√∑m
i=1 ξ

2
i,n = +∞,

and

lim sup
n→+∞

b∫
a

F (x, ξ1,n, . . . , ξm,n) dx∑m
i=1

|ξi,n|pi
pi

= B. (3.3)

For each n ∈ N define
wi,n(x) := ξi,n

and put wn := (w1,n, . . . , wm,n).
We easily get that

‖wi,n‖pipi = (b− a)|ξi,n|pi .

At this point, bearing in mind (i), we infer

Φ(wn)− λΨ(wn) =

m∑
i=1

|ξi,n|pi
pi

− λ
b∫
a

F (x, ξ1,n, . . . , ξm,n)dx, n ∈ N.

If B < +∞, let ε ∈
(

1
λB , 1

)
. By (3.3), there exists vε such that

b∫
a

F (x, ξ1,n, . . . , ξm,n)dx > εB
m∑
i=1

|ξi,n|pi
pi

, n > vε.

Moreover,

Φ(wn)− λΨ(wn) ≤
m∑
i=1

|ξi,n|pi
pi

− λεB
m∑
i=1

|ξi,n|pi
pi

, n > vε.

Taking into account the choice of ε, one has

lim
n→+∞

[Φ(wn)−Ψ(wn)] = −∞.

If B = +∞, let us consider M > 1
λ . By (3.3), there exist vm such that

b∫
a

F (x, ξ1,n, . . . , ξm,n)dx > M

m∑
i=1

|ξi,n|pi
pi

, n > vm.

Moreover,

Φ(wn)− λΨ(wn) ≤
m∑
i=1

|ξi,n|pi
pi

− λM
m∑
i=1

|ξi,n|pi
pi

, n > vε.
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Taking into account the choice of M , also in this case, one has

lim
n→+∞

[Φ(wn)−Ψ(wn)] = −∞.

Applying Theorem 2.2, we deduce that the functional Φ − λΨ admits a sequence of
critical points which is unbounded inX. Hence, our claim is proved and the conclusion
is achieved.

Remark 3.4. If

lim inf
µ→+∞

b∫
a

sup(t1,...,tm)∈Θ(µ) F (x, t1, . . . , tm)dx

µ
= 0

and

lim sup
|t1|→+∞,...,|tm|→+∞

b∫
a

F (x, t1, . . . , tm)dx∑m
i=1

|ti|pi
pi

= +∞,

clearly, hypothesis (H4) is verified and Theorem 3.3 guarantees the existence of in-
finitely many weak solutions for problem (Pλ), for every λ ∈ (0,+∞), the main result
ensures the existence of infinitely many weak solutions for problem (Pλ).
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