Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this note a noncommutative version of Jajte’s theorem on the existence of the ergodic Hilbert transform is given. As a noncommutative counterpart of the classical almost everywhere convergence the bundle convergence of operators in a von Neumann algebra and its L2-space is used.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
223--234
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Faculty of Mathematics, University of Łódź, ul. Banacha 22, 90-238 Łódź, Poland
Bibliografia
- [1] V. F. Gaposhkin, Criteria of the strong law of large numbers for some classes of stationary processes and homogeneous random fields, Theory Probab. Appl. 22 (1977), pp. 295-319.
- [2] Y. F. Gaposhkin, Individual ergodic theorem for normal operators in L2, Funct. Anal. Appl. 15 (1981), pp. 18-22.
- [3] E. Hensz and R. Jajte, Pointwise convergence theorems in L2 over a von Neumann algebra, Math. Z. 193 (1986), pp. 413-429.
- [4] E. Hensz, R. Jajte and A. Paszkiewicz, The bundle convergence in von Neumann algebras and their L2-spaces, Studia Math. 120 (1) (1996).
- [5] R. Jajte, On the existence of the ergodic Hilbert transform, Ann. Probab. 15 (1987), pp. 831-835.
- [6] R. Jajte, Strong Limit Theorems in Noncommutative L2-Spaces, Lecture Notes in Math. No 1477, Springer, Berlin-Heidelberg-New York 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00da6442-9afd-48b8-aa29-ed82bc98c0a3