Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We investigate a fiber diameter influence on optical transport of dielectric particles along subwavelength optical fibers using a near infrared laser of 1.55 μm wavelength. Theoretical analysis indicates that at 1.55 μm, the evanescent field at the fiber surface increases at first and then decreases with an increase of the fiber diameter from 600 nm to 1.6 μm, exhibiting a maximum at the fiber diameter of 950 nm. Based on three-dimensional finite-difference time-domain simulations, optical scattering forces acted on the dielectric particles and transport velocities of the particles were calculated for two fibers in the diameters of 930 nm and 1.5 μm. To support the theoretical analysis, experiments were performed using the two fibers to transport SiO2 particles (sizes of 530 nm and 1.5 μm) and TiO2 particles (size of 1.5 μm). The results show that with the same laser power launched into the two fibers, larger transport velocities can be obtained along the 930 nm diameter fiber.
Czasopismo
Rocznik
Tom
Strony
707--718
Opis fizyczny
Bibliogr. 24 poz., rys., wykr., tab.
Twórcy
autor
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
autor
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
autor
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Bibliografia
- [1] GRIER D.G., A revolution in optical manipulation, Nature 424(6950), 2003, pp. 810–816.
- [2] HARDT S., SCHÖNFELD F., Microfluidic Technologies for Miniaturized Analysis Systems, Springer, New York, 2007.
- [3] OZKAN M., WANG M., OZKAN C., FLYNN R., BIRKBECK A., ESENER S., Optical manipulation of objects and biological cells in microfluidic devices, Biomedical Microdevices 5(1), 2003, pp. 61–67.
- [4] WANG M.M., TU E., RAYMOND D.E., YANG J.M., ZHANG H., HAGEN N., DEES B., MERCER E.M., FORSTER A.H., KARIV I., MARCHAND P.J., BUTLER W.F., Microfluidic sorting of mammalian cells by optical force switching, Nature Biotechnology 23(1), 2005, pp. 83–87.
- [5] NAHMIAS Y., SCHWARTZ R.E., VERFAILLIE C.M., ODDE D., Laser-guided direct writing for three-dimensional tissue engineering, Biotechnology and Bioengineering 92(2), 2005, pp. 129–136.
- [6] ŠILER M., ČIŽMÁR T., JONÁŠ A., ZEMÁNEK P., Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination, New Journal of Physics 10(11), 2008, article 1130101.
- [7] ASHKIN A., Acceleration and trapping of particles by radiation pressure, Physical Review Letters 24(4), 1970, pp. 156–159.
- [8] LITTLE H., BROWN C., GARCÉS-CHÁVEZ V., SIBBETT W., DHOLAKIA K., Optical guiding of microscopic particles in femtosecond and continuous wave Bessel light beams, Optics Express 12(11), 2004, pp. 2560–2565.
- [9] FISCHER P., CARRUTHERS A.E., VOLKE-SEPULVEDA K., WRIGHT E.M., BROWN C.T.A., SIBBETT W., DHOLAKIA K., Enhanced optical guiding of colloidal particles using a supercontinuum light source, Optics Express 14(12), 2006, pp. 5792–5802.
- [10] NG L.N., ZERVAS M.N., WILKINSON J.S., LUFF B.J., Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide, Applied Physics Letters 76(15), 2000, pp. 1993–1995.
- [11] TANAKA T., YAMAMOTO S., Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide, Applied Physics Letters 77(20), 2000, pp. 3131–3133.
- [12] GAUGIRAN S., GÉTIN S., FEDELI J.M., COLAS G., FUCHS A., CHATELAIN F., DÉROUARD J., Optical manipulation of microparticles and cells on silicon nitride waveguides, Optics Express 13(18), 2005, pp. 6956–6963.
- [13] GRUJIC K., HELLESO O.G., Dielectric microsphere manipulation and chain assembly by counter--propagating waves in a channel waveguide, Optics Express 15(10), 2007, pp. 6470–6477.
- [14] SCHMIDT B.S., YANG A.H.J., ERICKSON D., LIPSON M., Optofluidic trapping and transport on solid core waveguides within a microfluidic device, Optics Express 15(22), 2007, pp. 14322–14334.
- [15] BRAMBILLA G., MURUGAN G.S., WILKINSON J.S., RICHARDSON D.J., Optical manipulation of microspheres along a subwavelength optical wire, Optics Letters 32(20), 2007, pp. 3041–3043.
- [16] YANG A.H.J., MOORE S.D., SCHMIDT B.S., KLUG M., LIPSON M., ERICKSON D., Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides, Nature 45(7225), 2009, pp. 71–75.
- [17] SHEU F.W., WU H.Y., CHEN S.H., Using a slightly tapered optical fiber to attract and transport microparticles, Optics Express 18(6), 2010, pp. 5574–5579.
- [18] AHLUWALIA B.S., MCCOURT P., HUSER T., HELLESO O.G., Optical trapping and propulsion of red blood cells on waveguide surfaces, Optics Express 18(20), 2010, pp. 21053–21061.
- [19] CAI H., POON A.W., Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices, Optics Letters 35(17), 2010, pp. 2855–2857.
- [20] XU L., LI Y., LI B., Size-dependent trapping and delivery of submicro-spheres using a submicrofibre, New Journal of Physics 14(3), 2012, article 033020.
- [21] ZHANG Y., LI B., Particle sorting using a subwavelength optical fiber, Laser and Photonics Reviews 7(2), 2013, pp. 289–296.
- [22] ZHANG D., YUAN X.C., TJIN S.C., KRISHNAN S., Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping, Optics Express 12(10), 2004, pp. 2220–2230.
- [23] LIN S., SCHONBRUN E., CROZIER K., Optical manipulation with planar silicon microring resonators, Nano Letters 10(7), 2010, pp. 2408–2411.
- [24] ZHANG Y., LEI H., LI Y., LI B., Microbe removal using a micrometer-sized optical fiber, Lab on a Chip 12(7), 2012, pp. 1302–1308.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00d796f5-439e-40c4-9fa2-b9a4c7e2bf4e