PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generacja plazmonów polarytonów powierzchniowych na strukturach periodycznych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Surface plasmon polariton generation at periodic structures
Języki publikacji
PL
Abstrakty
PL
Niniejsza praca dotyczy generacji plazmonów polarytonów powierzchniowych (SPP) na asymetrycznych periodycznych strukturach metalowych. Przedstawiono wyniki numeryczne obrazujące działanie nowej konfiguracji jednowymiarowej struktury dyfrakcyjnej umożliwiającej kontrolę kierunku propagacji energii przy powierzchni przy zachowaniu padania normalnego. Warstwowa struktura składa się z dwóch różnych metalowych siatek, zanurzonych w różnych dielektrykach. Pokazano, że nawet niewielka zmiana ich przesunięcia względnego bądź zmiana kontrastu dielektrycznego może powodować zmianę kierunku propagacji energii w polu bliskim. Efekt ten może być wykorzystany przy projektowaniu urządzeń optycznych. W pracy przedstawiono także zarys metody numerycznej RCWA oraz rozszerzeń, na podstawie których opracowany został wszechstronny i zaawansowany kod numeryczny pozwalający na symulację oddziaływania pola elektromagnetycznego (EM) z wielowarstwową strukturą periodyczną o dowolnym profilu. Program umożliwia symulację padania, pod dowolnym kątem, fali płaskiej o dowolnej polaryzacji liniowej, bądź wiązki o dowolnym rozkładzie amplitudy i fazy. Możliwe jest także obliczenie spektralnych współczynników odbicia i transmisji, zależności dyspersyjnych, oraz wizualizacja rozkładu składowych pola w dowolnej płaszczyźnie. Przedstawione zostały także teoretyczne podstawy generacji i propagacji SPP. Przeprowadzono analizę modów cząstkowych wzbudzanych na metalowej strukturze jednowarstwowej pod kątem oddziaływania międzymodowego oraz transformacji modów zlokalizowanych w zdelokalizowane i ich wpływu na kierunek przepływu energii przy powierzchni. Zidentyfikowane zostały mody struktury dwuwarstwowej, ich wzajemne oddziaływanie oraz ich wpływ na odpowiedź optyczną całej struktury. Została sformułowana teza dotycząca możliwości interpretacji fizycznej działania struktury na podstawie analizy jednej z opisywanych konfiguracji. Wyjaśniono przyczyny fizyczne odpowiadające za zmianę kierunkowości propagacji energii w oparciu o analizę relacji dyspersji struktury i kierunków propagacji modów związanych z normalną do powierzchni ekwienergetycznej wyznaczoną przez wektor prędkości grupowej danego modu.
EN
The dissertation concerns the surface plasmon polariton (SPP) generation at asymmetrical periodic metal structures. Numerical results show an ability of new periodic one-dimensional configuration of metal grating to control energy propagation direction in the vicinity of the structure by a change of one of its geometrical parameters maintaining in the same time the advantage of normal incidence. The layered structure consists of two different metal gratings immersed in different dielectric media. It is showed that even a small change in the relative shift between both layers or a change in the dielectric filling contrast may redirect the energy in the near field. This effect may be useful in designing optical devices. An outline of numerical method used (RCWA) together with several extensions is given. This enabled to develop a versatile and advanced numerical code that allows to simulate electromagnetic (EM) field behaviour at multilayer periodic structures of arbitrary profile. The code allows to simulate EM field in the form of plane wave of linear polarisation impinging under the arbitrary angle or in the form of finite-diameter optical beam of arbitrary distribution of amplitude and phase. It also gives the possibility to calculate spectral transmission and reflection coefficients, dispersion relations and to visualise the distribution of field components in any plane. A theoretical basis of SPP generation and propagation is also given. An analysis of partial modes excited at one-layer metal periodic structure with the stress on modal interaction, surface-to-localized plasmon polariton transformation and their influence on the energy propagation direction near the structure is also presented. In addition, an identification of two-layered structure modes, their mutual interaction and influence on the whole optical response of the structure is given. Finally, a thesis regarding the possibility of physical interpretation of the principle of working of the asymmetrical structure is presented, based on one of the descripted configurations. On the basis of the dispersion relation analysis and modes propagation directions that are connected with the normal to equienergetic curve determined by a group velocity vector of the mode, physical reasons responsible for a change in the energy propagation direction are presented.
Rocznik
Tom
Strony
1--166
Opis fizyczny
Bibliogr. 129 poz., rys.
Twórcy
  • Instytut Podstawowych Problemów Techniki, Polskiej Akademii Nauk
Bibliografia
  • 1. R. W. Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag., 4 (1), 396-402, 1902.
  • 2. J. W. S. Rayleigh. Note on the remarkable case of diffraction spectra discovered by Prof. Wood. Phil. Mag., 14 (79), 60-65, 1907.
  • 3. U. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces. J. Opt. Soc. Am., 31 (3), 213-222, 1941.
  • 4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays, Nature, 391, 667-669, 1998.
  • 5. R. Zia, J. A. Schuller, A. Chandran and M. Brongersma. Plasmonics: the next chip-scale technology. Materials Today, 9 (7-8), 20-27, 2006.
  • 6. J. Z. Zhang, C. Noguez. Plasmonic optical properties and applications of metal nanostructures. Plasmonics, 3, 127-150, 2008.
  • 7. S. He, Y. Cui, Y. Ye, P. Zhang and Y. Jin. Optical nano-antennas and metamaterials. Materials Today, 12 (12), 16-24, 2009.
  • 8. A. Roszkiewicz, W. Szabelak and W. Nasalski. Surface plasmon polariton applications in selected branches of modern science and technology. J. Tech. Phys., 50 (1), 3-16, 2009.
  • 9. B. Lee, S. Kim, H. Kim, Y. Lim. The use of plasmonics in light beaming and focusing. Progress in Quantum Electronics, 34, 47-87, 2010.
  • 10. S. Kawata, Y. Inouye and P. Verma. Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics, 3, 388-394, 2009.
  • 11. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand. Near-field microscopy through a SiC superlens. Science, 313 (5793), 1595, 2006.
  • 12. V. Lotito, U. Sennhauser and C. Hafner. Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips. Opt. Express, 18 (8), 8722-8734, 2010.
  • 13. T. J. Antosiewicz, P. Wróbel, T. Szoplik. Performance of scanning near-field optical microscope probes with single groove and various metal coatings. Pla-smonics, 6(1), 11 -18, 2011.
  • 14. M. Righini, G. Volpe, C. Girard, D. Petrov and R. Quidant. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett., 100, 186804-1-4, 2008.
  • 15. Y. Kurokawa, H. T. Miyazaki. Metal-insulator-metal plasmon nanocavities: Analysis of optical properties. Phys. Rev. B, 75, 035411-1-13, 2007.
  • 16. H. T. Miyazaki, Y. Kurokawa. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett., 96, 097401-1-4, 2006.
  • 17. H. T. Miyazaki, Y. Kurokawa. Controlled plasmon resonance in closed metal/insulator/metal nanocavities. Appl. Phys. Lett., 89, 211126-1-3, 2006.
  • 18. I. P. Radko and S. I. Bozhevolnyi, A. B. Evlyukhin, A. Boltasseva. Surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt. Express, 15 (11), 6576-6582, 2007.
  • 19. X. Luo and T. Ishihara. Subwavelength photolithography based on surface plasmon polariton resonance. Opt. Express, 12 (14), 3055-3065, 2004.
  • 20. P. G. Kik, S. A. Maier and H. A. Atwater. Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources. Phys. Rev. B, 69 (4), 045418-1 -5, 2004.
  • 21. X. Luo and T. Ishihara. Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett., 84, 23-1-3, 2004.
  • 22. D. B. Shao and S. C. Chen. Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl. Phys. Lett., 86, 253107-1-3, 2005.
  • 23. A. F. Koenderink, J. V. Hernandez, F. Robicheaux, L. D. Noordam and A. Polman. Programmable nanolithography with plasmon nanoparticle arrays. Nano Lett., 7 (3), 745-749, 2007.
  • 24. A. A. Tseng. Recent developments in nanofabrication using scanning near-field optical microscope lithography. Optics & Laser Technology, 39, 514¬526, 2007.
  • 25. J. Einsle, J.-S. Bouillard, W. Dickson and A. V. Zayats. Hybrid FIB milling strategy for the fabrication of plasmonic nanostructures on semiconductor substrates. Nanoscale Res. Lett., 6 (1), 572-1 -5, 2011.
  • 26. J. Dostalek and W. Knoll. Biosensors based on surface plasmon-enhanced fluorescence spectroscopy (Review). Biointerphases, 3 (3), FD12-22, 2008.
  • 27. K. Okamoto, I. Niki and A. Scherer, Y. Narukawa and T. Mukai, Y. Kawaka-mi. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Ap-pl. Phys. Lett., 87, 071102-1-3, 2005.
  • 28. M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, Y. Ozaki. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal. Bioanal. Chem., 394 (7), 1747-1760, 2009.
  • 29. T. A. Leskova, M. Leyva-Lucero, E. R. Mendez, A. A. Maradudin, I. V. Novikov. The surface enhanced second harmonic generation of light from a randomly rough metal surface in the Kretschmann geometry. Opt. Commun., 183 (5-6), 529-545, 2000.
  • 30. R. Naraoka, H. Okawa, K. Hashimoto, K. Kajikawa. Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration. Opt. Commun., 248 (1-3), 249-256, 2005.
  • 31. B. Wang, L. Ke, S.-J. Chua. A nano-patterned organic light-emitting diode with high extraction efficiency. Journal of Crystal Growth, 288 (1), 119-122, 2006.
  • 32. J. Frischeisen, C. Mayr, N. A. Reinke, S. Nowy, W. Brutting. Surface plasmon resonance sensor utilizing an integrated organic light emitting diode. Opt. Express, 16 (22), 18426-18436, 2008.
  • 33. S. Wedge, J. A. E. Wasey and W. L. Barnes, I. Sage. Coupled surface plas-mon-polariton mediated photoluminescence from a top-emitting organic light-emitting structure. Appl. Phys. Lett., 85, 182-184, 2004.
  • 34. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim and Y.-C. Nah. Plasmon enhanced per¬formance of organic solar cells using electrodeposited Ag nanoparticles. Appl. Phys. Lett., 93, 073307-1-3, 2008.
  • 35. D. Derkacs, S. H. Lim, P. Matheu, W. Mar and E. T. Yu. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett., 89, 093103-1-3, 2006.
  • 36. P. K. Jain, I. H. El-Sayed and M. A. El-Sayed. Au nanoparticles target cancer. Nano Today, 2 (1), 18-29, 2007.
  • 37. L. M. Liz-Marzan. Nanometals: formation and color. Materials Today, 7 (2), 26 (31), 2004.
  • 38. E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimen¬sions. Science, 311, 189-193, 2006.
  • 39. J. P. Kottmann and O. J. F. Martin, D. R. Smith and S. Schultz. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B, 64, 235402-1-10, 2001.
  • 40. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz. Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem. Phys. Lett., 341, 1-6, 2001.
  • 41. E. Laux, C. Genet, T. Skauli and T. W. Ebbesen. Plasmonic photon sorters for spectral and polarimetric imaging. Nature Photonics, 2, 161 -164, 2008.
  • 42. Q. Chen and D. R. S. Cumming. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express, 18 (13), 14056-14062, 2010.
  • 43. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger and B. N. Chichkov. Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt. Express, 15 (25), 16667-16680, 2007.
  • 44. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, L. Kuipers. Light passing through subwavelength apertures. Rev. Mod. Phys., 82, 729-787, 2010.
  • 45. D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh and C. K. Lee. Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings. Opt. Express, 14 (8), 3503-3511, 2006.
  • 46. S. Kim, H. Kim, Y. Lim and B. Lee. Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings. Appl. Phys. Lett., 90, 051113-1-3, 2007.
  • 47. H. Kim, J. Park and B. Lee. Tunable directional beaming from subwavelength metal slits with metal-dielectric composite surface gratings. Opt. Lett., 34 (17), 2569-2571, 2009.
  • 48. D.-Z. Lin, T.-D. Cheng, C.-K. Chang, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, C.¬K. Lee. Directional light beaming control by a subwavelength asymmetric surface structure. Opt. Express, 15 (5), 2585-2591, 2007.
  • 49. B. Wang and G. P. Wang. Directional beaming of light from a nanoslit surrounded by metallic heterostructures. Appl. Phys. Lett., 88, 013114-1 -3, 2006.
  • 50. S. Kim, Y. Lim, H. Kim, J. Park and B. Lee. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl. Phys. Lett., 92, 013103-1-3, 2008.
  • 51. H. Caglayan, I. Bulu and E. Ozbay. Plasmonic structures with extraordinary transmission and highly directional beaming properties. Microwave and Opti-cal Technology Letters, 48 (12), 2491 -2496, 2006.
  • 52. H. Kim, B. Lee. Unidirectional surface plasmon polariton excitation on single slit with oblique backside illumination. Plasmonics, 4, 153-159, 2009.
  • 53. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen. Beaming light from a subwavelength aperture. Science, 297 (5582), 820-822, 2002.
  • 54. T. Ishi, J. Fujikata, K. Makita, T. Baba and K. Ohashi. Si nano-photodiode with a surface plasmon antenna. Jap. J. Appl. Phys., 44 (12), L364-L366, 2005.
  • 55. Z. Yu, G. Veronis, S. Fan and M. L. Brongersma. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Appl. Phys. Lett., 89, 151116-1-3, 2006.
  • 56. R. D. R. Bhat, N. C. Panoiu, S. R. J. Brueck and R. M. Osgood Jr. Enhancing the signal-to-noise ratio of an infrared photodetector with a circular metal grating. Opt. Express, 16 (7), 4588-4596, 2008.
  • 57. N. Bonod, E. Popov, L. Li, B. Chernov. Unidirectional excitation of surface plasmons by slanted gratings. Opt. Express, 15 (18), 11427-11432, 2007.
  • 58. B. Bai, X. Meng, J. Laukkanen, T. Sfez, L. Yu, W. Nakagawa, H. P. Herzig, L. Li and J. Turunen. Asymmetrical excitation of surface plasmon polaritons on blazed gratings at normal incidence. Phys. Rev. B, 80, 035407-1 -11, 2009.
  • 59. F. M. Wang, H. Liu, T. Li, S. M. Wang, S. N. Zhu, J. Zhu and W. Cao. Highly confined energy propagation in a gap waveguide composed of two coupled nanorod chains. Appl. Phys. Lett., 91, 133107-1-3, 2007.
  • 60. H. S. Chu, W. B. Ewe, W. S. Koh and E. P. Li. Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nano-wire chain. Appl. Phys. Lett., 92, 103103-1-3, 2008.
  • 61. Y.-F. Chau, H.-H. Yeh, C.-Y. Liu, D. P. Tsai. The optical properties in a chain waveguide of an array of silver nanoshell with dielectric holes. Optics Commun., 283, 3189-3193, 2010.
  • 62. W. M. Saj, T. J. Antosiewicz, J. Pniewski and T. Szoplik. Energy transport in plasmon waveguides on chains of metal nanoplates. Opto-Electronics Rev., 14 (3), 243-251, 2006.
  • 63. C. Girard. Near fields in nanostructures. Rep. Prog. Phys., 68, 1883-1933, 2005.
  • 64. P. Yeh. Optical waves in layered media. New York: John Wiley & Sons, 1988.
  • 65. S. A. Maier. Plasmonics: Fundamentals and applications. New York: Springer, 2007.
  • 66. C. Kittel. Wstęp do fizyki ciała stałego. Warszawa: PWN, 1999.
  • 67. H. Raether. Surface plasmons on smooth and rough surfaces and on gratings. Virginia: Springer-Verlag, 1988.
  • 68. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of surface plasmon polaritons. Phys. Rep., 408, 131-314, 2005.
  • 69. G. Goubau. Surface waves and their application to transmission lines. J. Appl. Phys., 21, 1119-1128, 1950.
  • 70. S.-D. Wu, T. K. Gaylord, E. N. Glytsis and Y.-M. Wu. Three-dimensional converging-diverging Gaussian beam diffraction by a volume grating. J. Opt. Soc. Am. A, 22 (7), 1293-1303, 2005.
  • 71. W. Nasalski. Optical beams at dielectric interface - fundamentals. Warsaw: Institute of Fundamental Technological Research Polish Academy of Sciences, 2007.
  • 72. W. Nasalski. Polarization versus spatial characteristics of optical beams at a planar isotropic interface. Phys. Rev. E, 74, 056613-1 -16, 2006.
  • 73. A. E. Siegman. Hermite-gaussian functions of complex argument as optical-beam eigenfunctions. J. Opt. Soc. Am., 63 (9), 1093-1094, 1973.
  • 74. A. Kostenbauder, Y. Sun and A. E. Siegman. Eigenmode expansions using biorthogonal functions: complex-valued Hermite-Gaussians. J. Opt. Soc. Am. A, 14 (8), 1780-1790, 1997.
  • 75. M. G. Moharam, E. B. Grann and D. A. Pommet, T. K. Gaylord. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A, 12 (5), 1068-1076, 1995.
  • 76. L. Li. Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A, 13 (5), 1024-1035, 1996.
  • 77. L. Li. New formulation of the Fourier modal method for crossed surface-relief gratings. J. Opt. Soc. Am. A, 14 (10), 2758-2767, 1997.
  • 78. M. G. Moharam, D. A. Pommet and E. B. Grann, T. K. Gaylord. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J. Opt. Soc. Am. A, 12, 1077, 1995.
  • 79. H. Kim and B. Lee. Pseudo-Fourier modal analysis of two-dimensional arbitrarily shaped grating structures. J. Opt. Soc. Am. A, 25 (1), 40-54, 2008.
  • 80. H. Kim, S. Kim, I.-M. Lee and B. Lee. Pseudo-Fourier modal analysis on dielectric slabs with arbitrary longitudinal permittivity and permeability profiles. J. Opt. Soc. Am. A, 23 (9), 2177-2191, 2006.
  • 81. B. Guizal, D. Barchiesi, D. Felbacq. Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method. J. Opt. Soc. Am. A, 20 (12), 2274-2280, 2003.
  • 82. P. Lalanne, G. M. Morris. Highly improved convergence of the coupled-wave method for TM polarization. J. Opt. Soc. Am. A, 13 (4), 779-784, 1996.
  • 83. G. Granet, B. Guizal. Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization. J. Opt. Soc. Am. A, 13 (5), 1019-1023, 1996.
  • 84. L. Li. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A, 13 (9), 1870-1876, 1996.
  • 85. S. Fan, J. D. Joannopoulos. Analysis of guided resonances in photonic crystal slab. Phys. Rev. B, 65, 235112-1-8, 2002.
  • 86. U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124 (6), 1866-1878, 1961.
  • 87. B. H. Kleemann and J. Ruoff, R. Arnold. Area-coded effective medium structures, a new type of grating design. Opt. Lett., 30 (13), 1617-1619, 2005.
  • 88. A. Roszkiewicz and W. Nasalski. Unidirectional SPP excitation at asymmetrical two-layered metal gratings. J. Phys. B: At. Mol. Opt. Phys., 43, 185401-1-8, 2010.
  • 89. P. B. Johnson and R. W. Christy. Optical constants of noble metals. Phys. Rev. B, 6 (12), 4370-4379, 1972.
  • 90. R. Petit (ed.). Electromagnetic theory of gratings. Heilderberg: Springer Verlag, 1980.
  • 91. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre and N. J. Halas. Metallodie-lectric gratings with subwavelength slots: Optical properties. Phys. Rev. B, 68, 205103-1-7, 2003.
  • 92. R. Ameling, D. Dregely and H. Giessen. Strong coupling of localized and surface plasmons to microcavity modes. Opt. Lett., 36 (12), 2218-2220, 2011.
  • 93. S. Zou and G. C. Schatz. Metal nanoparticle array waveguides: Proposed structures for subwavelength devices. Phys. Rev. B, 74, 125111 -1-5, 2006.
  • 94. R. Quidant, C. Girard, J.-C. Weeber and A. Dereux. Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains. Phys Rev. B, 69, 085407-1-7, 2004.
  • 95. B. Wang, J. Jiang, G. P. Nordin. Compact slanted grating couplers. Opt. Ex¬press, 12 (15), 3313-3326, 2004.
  • 96. U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters. Berlin: Springer, 1995.
  • 97. A. O. Pinchuk, G. C. Schatz. Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mat. Sci. Eng., B 149, 251-258, 2008.
  • 98. M. R. Gadsdon, I. R. Hooper and J. R. Sambles. Optical resonances on subwavelength silver lamellar gratings. Opt. Express, 16 (26), 22003-22028,
  • 2008.
  • 99. M. R. Gadsdon, I. R. Hooper, A. P. Hibbins and J. R. Sambles. Surface plasmon polaritons on deep, narrow-ridged rectangular gratings. J. Opt. Soc. Am. B, 26 (6), 1228-1237, 2009.
  • 100. B. Sturman and E. Podivilov, M. Gorkunov. Theory of extraordinary light transmission through arrays of subwavelength slits. Phys Rev. B, 77, 075106¬1-12, 2008.
  • 101. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev. Lett., 86 (6), 1114-1117, 2001.
  • 102. S. G. Tikhodeev, N. A. Gippius. Plasmon-polariton effects in nanostructured metal-dielectric photonic crystals and metamaterials. Phys. Usp., 52 (9), 945¬949, 2009.
  • 103. M. Kretschmann and A. A. Maradudin. Band structures of two-dimensional surface-plasmon polaritonic crystals. Phys. Rev. B, 66, 245408-1-8, 2002.
  • 104. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl and H. Giessen. Wave-guide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev. Lett., 91 (18), 183901 -1 - 4, 2003.
  • 105. J. Kim. Surface plasmon-polariton waveguiding characteristincs of met¬al/dielectric quasi-coplanar structures. Opt. Lett., 32 (23), 3405-3407, 2007.
  • 106. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev and O. J. F. Martin. Controlling the Fano interference in a plasmonic lattice. Phys. Rev. B, 76, 201405R-1-4, 2007.
  • 107. J. Zhang, L. Cai, W. Bai and G. Song. Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide. Opt. Lett., 35 (20), 3408-3410, 2010.
  • 108. N. A. Gippius, T. Weiss, S. G. Tikhodeev and H. Giessen. Resonant mode coupling of optical resonances in stacked nanostructures. Opt. Express, 18 (7), 7569-7574, 2010.
  • 109. X.-S. Lin and X.-G. Huang. Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett., 33 (23), 2874-2876, 2008.
  • 110. S. Feng, J. M. Elson and P. L. Overfelt. Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes. Opt. Express, 13 (11), 4113¬4124, 2005.
  • 111. S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues and P. Viktorovitch, I. Sagnes, L. Legratiet and M. Strassner. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter. Opt. Express, 14 (8), 3129-3137, 2006.
  • 112. V. Mikhailov, G. A. Wurtz, J. Elliott, P. Bayvel and A. V. Zayats. Dispersing light with surface plasmon polaritonic crystals. Phys. Rev. B, 72, 075107-1 -4, 2005.
  • 113. K. Kempa and A. Rose. Negative refraction of photonic and polaritonic waves in periodic structures. Bull. Pol. Ac.: Tech., 57 (1), 35-39, 2009.
  • 114. G. Gantzounis and N. Stefanou. Theoretical analysis of three-dimensional polaritonic photonic crystals. Phys. Rev. B, 72, 075107-1 -7, 2005.
  • 115. B. Wood and J. B. Pendry, D. P. Tsai. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B, 74, 115116-1 -8, 2006.
  • 116. M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Phys Rev. B, 62 (16), 10696-10705, 2000.
  • 117. B. Stein, J.-Y. Laluet, E. Devaux, C. Genet and T. W. Ebbesen. Surface plas-mon mode steering and negative refraction. Phys. Rev. Lett., 105, 266804-1 - 4, 2010.
  • 118. D. C. Adams, S. Thongrattanasiri, T. Ribaudo, V. A. Podolskiy and D. Wasserman. Plasmonic mid-infrared beam steering. Appl. Phys. Lett., 96: 201112¬1-13, 2010.
  • 119. M. Born and E. Wolf. Principles of Optics. Oxford: Pergamon Press, 1970.
  • 120. M. G. Moharam and T. K. Gaylord. Chain-matrix analysis of arbitrary-thickness dielectric reflection gratings. J. Opt. Soc. Am., 72 (2), 187-190, 1982.
  • 121. H. Leong and J. Guo. Surface plasmon resonance in superperiodic metal nanoslits. Opt. Lett., 36 (24), 4764-4766, 2011.
  • 122. D. E. Chang, A. S. Soerensen, E. A. Demler and M. D. Lukin. A single¬photon transistor using nanoscale surface plasmons. Nature, 3, 807-812, 2007.
  • 123. J. Tominaga, C. Mihalcea, D. Buchel, H. Fukuda, T. Nakano and N. Atoda, H. Fuji, T. Kikukawa. Local plasmon photonic transistor. Appl. Phys. Lett., 78 (17), 2417-2419, 2001.
  • 124. X. Zhang, B. Sun, J. M. Hodgkiss and R. H. Friend. Tunable ultrafast optical switching via waveguided gold nanowires. Adv. Mater., 20, 4455-4459, 2008.
  • 125. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming and Q. Zhan. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt. Express, 19 (7), 5970-5978, 2011.
  • 126. L. A. Dunbar, M. Guillaumee, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno and R. P. Stanley. Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector. Appl. Phys. Lett., 95, 011113-1-3, 2009.
  • 127. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord and D. L. Brundrett. Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings. J. Opt. Soc. Am. A, 18 (8), 1912-1928, 2001.
  • 128. B. Guizal, D. Felbacq. Electromagnetic beam diffraction by a finite strip grating. Opt. Commun., 165, 1-6, 1999.
  • 129. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl and H. Giessen. Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations. Phys. Rev. B, 74, 155435-1-8, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00d5d7ed-b422-4291-b146-6a98fa984803
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.