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Abstract: 
The paper introduces the bi-partial version of the well 
known p-median or p-center facility location problem. 
The bi-partial approach, developed by the author, pri-
marily to deal with the clustering problems, is shown 
here to work for a problem that does not possess some 
of the essential properties, inherent to the bi-partial for-
mulations. It is demonstrated that the classical objective 
function of the problem can be correctly interpreted in 
terms of the bi-partial approach, that it possesses the 
essential properties that are at the core of the bi-partial 
approach, and, finally, that the general algorithmic pre-
cepts of the bi-partial approach can also be applied to 
this problem. It is proposed that the use of bi-partial ap-
proach for similar problems can be beneficial from the 
point of view of flexibility and interpretation.

Keywords: facility location, p-median, p-center, cluster-
ing, bi-partial approach

1. Introducing the Bi-partial Approach
The bi-partial approach was developed by the 

present author at the beginning of the 1980s (see [5], 
[6]) primarily as a way of dealing with the problems of 
cluster analysis, its strongest point being the capacity 
of providing the solution to the clustering problem in-
cluding the optimum number of clusters, without the 
need of referring to any external (usually statistical) 
criteria. The approach has been recently described in 
a formal manner in Owsiński [7], [8], and its applica-
tion to some special task in data analysis was provid-
ed in Owsiński [9]. Dvoenko [1] applied the approach 
to the well-known k-means-type procedure.

The approach is based on the use of the bi-partial 
objective function, which is composed, according to 
the name, of two terms, which, in very general way, 
can be subsumed for clustering as representing the 
inner cohesion of the clusters and the outer sepa-
ration of the clusters1. If cohesion within clusters is 
measured by some function of distances between the 
objects, or measurements, or samples, inside individ-
ual clusters, denoted QD(P), where P is a partition of 
the set of n objects, indexed i = 1,…,n, into clusters Aq, 
q = 1,…,p, and subscript D means that we consider dis-
tances inside clusters, then we put as measure of sep-
aration of different clusters QS(P), meaning a function 

of similarities of objects in different clusters, and the 
sum of the two, QD

S(P), is minimised (possibly small 
distances inside clusters and possibly small similari-
ties among clusters).

This function, QD
S(P), has a natural dual, namely 

QS
D(P), in which the two components represent, re-

spectively, cohesion within clusters, measured with 
similarities (proximities) inside the particular clus-
ters, QS(P), and distances between different clusters, 
measured with distances between objects, belonging 
to different clusters, QD(P). The function QS

D(P) is, of 
course, maximised.

Even though this concept, at its general level, 
may appear to be close to trivial, there exist concrete 
implementations of the two dual objective functions, 
which form novel and interesting approaches, es-
pecially regarding cluster analysis. Moreover, if the 
components of the objective functions are endowed 
with definite, quite plausible properties, the approach 
leads to effective solution algorithms.

2. Problem Formulation
The problem we address here is different from the 

majority of problems taken as instances of applica-
tion of the bi-partial approach. Namely, the problem 
we address is a classical question in operations re-
search, related to location analysis. Not only, though, 
the interpretation of the problem is quite specific, but 
also the very form is in a way not appropriate for the 
treatment through the bi-partial formalism, as intro-
duced here.

We deal, namely, in a very simplistic, but also very 
general manner, with the following problem

min Σq(Σi∈Aq d(xi,xq) + c(q))                  (1)

with minimisation being performed over the choice of 
the set of p points (objects) xi that are selected as the 
central or median points xq, q = 1,…,p. For our further 
considerations it is of no importance whether these 
points belong to the set X of objects (medians) or not 
– i.e. they are only required to be the elements of the 
space EX (centers), to which all the objects, either ac-
tually observed, or potentially existing, belong. It is, 
however, highly important that the second compo-
nent of the objective function, namely Σqc(q), does not 
involve any notion of distance or proximity.

While d(.,.) is some distance, like in the general 
formulation of the bi-partial approach, where it en-
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ters either QD(P) or QD(P), c(q) is a non-negative value, 
interpreted as some cost, related to a facility q. The 
problem regarding (1) is to find a set of p (q = 1,…,p) 
locations of facilities, such that the overall cost, com-
posed of the sum of distances between points, as-
signed to the individual facilities, and these facilities, 
and the sum of costs, related to these facilities, is mi-
nimised. It is, of course, assumed that the costs c(q) 
and distances d(.,.) are appropriately scaled, in order 
for the whole to preserve interpretative sense.

The costs may be given in a variety of manners: 
as equal constants for each arbitrary point from X 
or from EX, i.e. c, so that the cost component in (1) is 
simply equal pc, or as (more realistically) the values, 
determined for each point separately, i.e. c(i), or as 
a function, composed of the setup component (say, 
c1, if this setup cost is equal for all locations) and the 
component that is proportional to the number of loca-
tions, assigned to the facility q, with the proportional-
ity coefficient equal c2 (i.e. the cost for a facility is then 
c1 + cardAqc2). Of course, more complex, nonlinear 
cost functions, also with c1 replaced by c1(i), can, as 
well, be (and sometimes are) considered.

This problem has a very rich literature, with spe-
cial numerical interest in its “pure” form, without the 
cost component, mainly devoted to mathematical and 
geometric properties and the respective (approxima-
tion) algorithms and their effectiveness. Notwith-
standing this abundant tradition, the issues raised 
and the results obtained, we shall consider here the 
form of (1) in one of its basic variants.

3. Some Hints at Cluster Analysis
Any Reader with a knowledge in cluster analysis 

shall immediately recognise the first component of (1) 
as corresponding to the vast family of the so-called “k-
means” algorithms, where such a form is taken as the 
minimised objective function. Indeed, this fact is the 
source of numerous studies, linking facility location 
problems with clustering approaches. One can cite in 
this context, for instance, the work of Pierre Hansen 
(e.g. [2]), but most to the point here is the recent pro-
posal from Liao and Guo [3], this proposal explicitly 
linking k-means with facility location, similarly as this 
was done several decades ago by Mulvey and Beck [4].

The latter proposal by Liao and Guo [3] is insofar 
interesting as the facility of realisation of the basic 
k-means algorithm allows for the relatively straight-
forward accommodation of additional features of the 
facility location problem (e.g. definite constraints on 
facilities and their sets).

Thus, while the first component of the function (1) 
could be treated with some clustering approaches, 
e.g. those based on the k-means type of procedure, 
the issue is in the way the entire function (1) is to be 
minimised. 

4. An Example
For the sake of illustration, we shall consider the 

problem (1) in the following more concrete, even 
though very simple, indeed, form:

minP Σq(Σi∈Aq d(xi,xq) + c1 + c2card(Aq))        (2)

where c1 is the (constant) “facility setup cost”, while 
c2 is the (constant) unit cost, associated with the ser-
vicing of each object i ∈ Aq, except for the “first one”, 
this cost being included in the setup cost. Such a for-
mulation, even if still quite stylised, seems to be fully 
plausible as an approximation. It can, of course, be 
transformed to

min (ΣqΣi∈Aq d(xi,xq) + pc1 + c2n),           (2a)

where it is obvious that we could deal away with the 
component, associated with the unit cost c2. We shall 
keep it, though, for illustrative purposes, since the 
part, related to unit costs may, and usually does, take 
more intricate, nonlinear forms.

The problem (2) can be, quite formally, and with 
all the obvious reservations, mentioned, anyway, be-
fore, moulded into the general bi-partial scheme, i.e.

minP QS
D(P) = QD(P) + QS(P),                 (3)

where partition P encompasses, in this case, both the 
composition of Aq, q = 1,…,p, taken together with the 
number p of facilities, and the location of these facili-
ties, i.e. choice of locations from (say) X as the places 
for facilities q.

Consider the simple case, shown in Fig. 1, with 
d(.,.) defined as Manhattan distance, the cost compo-
nent of (2) being based on the parameter values c1 = 
3, c2 = 1. Again, these numbers, if appropriately in-
terpreted, can be considered plausible (e.g. distance, 
corresponding to annual transport cost, and c1 corre-
sponding to annual write-off value).
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Figure 1. A simple academic example for the facility lo-
cation problem

Table 1 shows the exemplary values of QS
D(P) = 

QD(P) + QS(P), according to (2), for a series of parti-
tions P. This is a nested set of partitions, i.e. in each 
consecutive partition in the series one of the subsets 
of objects, a cluster Aq, is the sum of some of the clus-
ters from the preceding partition, with all the other 
clusters being preserved. Such a nested sequence of 
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partitions is characteristic for a very broad family of 
cluster algorithms – the progressive merger or pro-
gressive split algorithms.

The character of results from Table 1, even if close 
to trivial, is quite telling, and indeed constitutes a rep-
etition of the observations made for other cases, in 
which the bi-partial approach has been applied. Note 
that the values of QD(P) increase along the series of 
partitions, while the values of QS(S) – decrease, and 
QS

D(P) has a minimum, which, for his simple case, cor-
responds, indeed, to the solution to the problem.

5.  Some Algorithmic Considerations: the Use 
of the k-means Procedure
As indicated before, the problem lends itself to the 

k-means-like procedure, which, in general and quite 
rough terms, at that, takes the following course:

0o Generate p 2 points as initial (facility location) 
seeds (in this case, the case of p-centers, the points 
generated belong to X), usually p << n

1o Assign to the facility location points all the n 
points from the set X, based on minimum distance, es-
tablishing thereby clusters Aq, q = 1,…, p

2o If the stop condition is not fulfilled, determine 
the representatives (facility locations) for the clusters 
Aq, otherwise STOP

3o Go to 1o.
This procedure, as we know, converges very quick-

ly, although it can get stuck in a local minimum. Yet, 
owing to its positive numerical features, it can be 
restarted from various initial sets of p points many 
times over, and the minimum values of the objective 
function obtained indicate the proper solution.

In the here analysed problem of facility location, 
since such problems rarely are really large in the stan-
dard sense of data analysis problems, it is quite fea-
sible to run the k-means procedure, as outlined above, 
for consecutive values of p in order to check whether 
a minimum over p can be found for a definite formu-

lation of the facility-location-related QS
D(P). Although 

we shall not be demonstrating this here, in view of 
the opposite monotonicity of both components of 
QS

D(P) along p, the minimum found over p is a global 
minimum (although, of course, it is not necessarily 
the solution to the problem considered, since we deal 
here only with an approximation of the actual objec-
tive function). This procedure can be simplified so as 
to encompass only a part of the sequence of values of 
p, starting, say from p = 2 upwards, until a minimum 
is encountered.

6.  Algorithmic Considerations Based on 
the Bi-partial Approach
We shall now present the algorithmic approach 

that is based on the basic precepts of the bi-partial ap-
proach. Assuming, namely, the property that we have 
observed for the case of the concrete objective func-
tion (2), that is – the opposite monotonicity of the two 
components of the objective function, we can refor-
mulate it, obtaining, in the general case, the following 
parametric problem:

minP QS
D(P,r) = rQD(P) + (1-r)QS(P),          (4)

where the parameter r∈[0,1] corresponds to the 
weights we may attach to the two components of the 
objective function. Actually, it is used only for algorith-
mic purposes, and not to express any sort of weight, 
and we assume that we weigh equally the two compo-
nents (r = ½). Here, we make no a priori assumptions 
as to the value of p, in distinction from the approach, 
outlined above, based on the k-means procedure. The 
form (4) enables the construction of a suboptimisa-
tion algorithm, provided the two components of the 
objective function are endowed with certain proper-
ties. We shall outline the construction of this algo-
rithm for the case of the objective function (2).

Table 1. Values of QS
D(P) = QD(P) + QS(P) for a series of partitions, according to (2)

QD(P) QS(P) – calculation QS(P) - 
value QS

D(P) Partitions (facility locations in bold) p

0 12*3+12*1 48 48 All locations are facility locations 12

1 11*3+10*1+1*2 45 46 Merger of (0,0) and (1,0) 11

2 10*3+8*1+2*2 42 44 Merger of (2,3) and (3,3) 10

3 9*3+7*1+2+3 39 42 Addition of (3,4) to (2,3) and (3,3) 9

13 4*3+4*3 24 37
{(0,0), (1,0), (1,2)} {(2,3), (3,3), (3,4)}, 
{(5,7), (6,8), (7,7)}, {(1,8), (2,7), (2,9)}

4

22 3*3+6+3+3 21 43
{(0,0), (1,0), (1,2), (2,3), (3,3), (3,4)}, 

{(5,7), (6,8), (7,7)}, {(1,8), (2,7), (2,9)}
3

55 1*3+12 15 70
{(0,0), (1,0), (1,2), (2,3), (3,3), (3,4), (5,7), 

(6,8), (7,7), (1,8), (2,7), (2,9)}
1
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Thus, the above general form is equivalent, for (2), 
to the following one:

minP (rΣqΣi∈Aq d(xi,xq) + (1-r)Σq(c1 + c2cardAq)).   (5)

Now, take the iteration step index, t, starting with t 
= 0. Consider (5) for r0 = 1. We obtain

minP (1⋅ΣqΣi∈Aq d(xi,xq) + 0⋅Σq(c1 + c2cardAq) = ΣqΣi∈Aq d(xi,xq)). (6)

Since we did not make any assumptions, concern-
ing the value of p, we can easily see that the global 
minimum for (6) is obtained for p = n, i.e. when each 
object (location) contains a facility (each location 
constitutes a separate cluster). Denote this particu-
lar, extreme partition by P0. The situation described 
is illustrated in the first line of Table 1. The value of 
the original objective function is, therefore, equal n(c1 
+ c2), since the first component disappears, we deal 
with n facilities, and all cardAq = cardAi are equal 1.

Then, we decrease the value of r from r0 = 1 down. 
At some point, for r1, the value of the parameter is low 
enough to make the value of the second component of 
the objective function, (1-r)Σq(c1 +c2cardAq), weigh suffi-
ciently to warrant aggregation of two locations into one 
cluster, with one facility, serving the two locations. This 
happens when the following equality holds:

QS
D(P0,r1) = QS

D(P1,r1),                     (7)

where P1 is the partition, which corresponds to the 
aggregation operation mentioned, the equality from 
(7) being equivalent, in the case here considered, to

r1⋅0 + (1-r1) n(c1 + c2) = r1d(i*,j*) + (1-r1) (n(c1 + c2) – c1)    (8)

where i*,j* is the pair of locations, for which the value 
of r1 is determined. This value, conform to (8) equals

r1(i*,j*) = c1/(d(i*,j*) + c1).                     (9)

This relation is justified by the fact that for each 
passage from p to p-1, accompanying aggregation, the 
value of the second component decreases by c1, while 
a value of distance, or a more complex function of dis-
tances, is added to the first component.

As we look for the highest possible r1, which fol-
lows r0 = 1, it is obvious, that the d(i*,j*) we look for 
must be smallest one among those not yet contained 
inside the clusters (i.e., for this step – among all dis-
tances). In the subsequent steps t we use the equation 
(7) in its more general form, i.e.

QS
D(Pt-1,rt) = QS

D(Pt,rt),                      (10)

and derive from it the expression analogous to (9). In 
this particular case – which is, anyway, quite similar 
to several of the implementations of the bi-partial ap-
proach for clustering – the equation, analogous to (9) 
is obtained from (10), meaning that at each step t the 
minimum of distance is being sought, exactly as in the 
classical progressive merger procedures, like single 
link, complete link etc.

The procedure stops when, for the first time, rt 
is obtained in the decreasing sequence of r0, r1, r2,…, 
lower than ½ (the sequence of rt, if realised until the 
aggregation of all locations into one cluster, will, of 
course, end at t = n-1). Falling below ½ means, name-
ly, that “on the way” the partition Pt was obtained, 
which was generated by the algorithm for r = ½, cor-
responding to the equal weights of the two compo-
nents of the objective function.

Thus, we deal with a procedure that is entirely 
analogous to the simple progressive merger algo-
rithms, but has an inherent capacity of indicating the 
“solution” to the problem, without any reference to 
an external criterion. We used the quotation marks, 
when speaking of “solution”, because the procedure 
does not guarantee in any way the actual minimum of 
(2), since the operations, performed at each step, are 
limited to aggregation. The experience with other cas-
es shows that a simple search in the neighbourhood of 
the suboptimal solution found suffices for finding the 
actual solution, if it differs from the suboptimal one.

7. Some Comments and the Outlook
The illustration, here provided, even though extreme-

ly simple, is sufficient to highlight the capacity of the bi-
partial approach to deal with the p-median / p-center 
type of facility location problems. In fact, for (slightly) 
more complex formulations of the problem, like

minP Σq(Σi∈Aq d(xi,xq) + c1(q) + c2f(card(Aq)))    (11)

i.e. where setup costs are calculated for each poten-
tial facility location separately, and f(.) is an increas-
ing concave function, the relation analogous to (10) 
yields only marginally more intricate procedure, 
analogous to that based on (9), where for each aggre-
gation the minimum has to be found for the two loca-
tions or clusters aggregated.

The issue, worth investigation, which arises there 
from is: what realistic class of the facility location prob-
lems can be dealt with through the bi-partial approach?

Concerning the comparison with the here pro-
posed procedure, based on the classical k-means, the 
following points must be raised:
– k-means outperform progressive merger procedures 
for data sets with numerous objects (locations), 
but not too many dimensions (here: by virtue of 
definition, either very few, or just two), when storing 
of the distance matrix and operating on it is heavier 
than calculating np (much less than n2) distances at 
each iteration; in the cases envisaged n would not 
exceed thousands, and p is expected not to be higher 
than 100, so that the two types of procedures might 
be quite comparable;
– there exists a possibility of constructing a hybrid 
procedure, in which k-means would be performed for 
a sequence of values of p at the later stages of the bi-
partial procedure, with the result of the aggregation, 
performed by the bi-partial procedure being the 
starting point for the k-means algorithm;
– given the proposal by Dvoenko [1], there exists also 
a possibility of implementing directly the bi-partial 
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version of k-means, with specially designed form of 
the two components of the objective function; this, 
however, would require, indeed, additional studies.
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Notes

1  In some other circumstances the two can be re-
ferred to as “precision” and “distinguishability”, 
which brings us quite close, indeed, to the standard 
oppositions, known from various domains of data 
analysis, such as “fit” and “generalisation” or “pre-
cision” and “recall”.

2 We use the classical name of the k-means algo-
rithm, although the number of clusters, referred to 
in this name as “k”, is denoted in the present paper, 
conform to the notation adopted in the bi-partial 
approach, by p.
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