PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modeling of Post-Failure Behavior of the Rock Mass and its Effect on the Stress-Deformation State in the Vicinity of a Mining Excavation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study investigated the impact of post-failure properties of the rock mass on the stress-deformation state in the vicinity of the underground excavation and the pressure exerted on the support. An analytical solution to the problem was presented, including the creation of inelastic zones in the vicinity of the excavation: ideal-plastic zone with residual strength and plastic zone with mild decrease of rock medium strength and taking into account the dilatancy. The analysis of the obtained dependencies was carried out using geotechnical parameters characterizing the Carboniferous rock mass of a hard coal mine. The influence of the plastic zone was determined with a mild decrease in strength to the state of stress, deformation and pressure on the rock mass support. The results of the considerations were compared with the solution, which omitted the softening of the rock mass and the solution based on the model of the elastic-plastic-brittle medium. The results of the analysis broaden the knowledge on the behavior of the rock medium in the vicinity of the excavation. The obtained solution can be further developed in order to enable its practical application, especially under the conditions in which the behavior of the rock medium in the vicinity of the excavation well reflects the elastic-plastic model with a gentle drop in the strength of the rock material.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, Lublin
Bibliografia
  • 1. Alonso E., Alejano L.R., Varas F., Fdez-Manin G. and Carranza-Torres C. Ground response curves for rock masses exhibiting strain-softening behaviour. Int. J. Numer. Anal. Methods Geomech., 2003, 27, 1153-1185.
  • 2. Barla G. Analysis and design methods of tunnels in squeezing rock conditions. Rivista Italiana Di Geotecnica, 2000, 1, 22-29.
  • 3. Berest P., Nguyen-Minh D. and Panet M. Contribution à l’étude de la stabilité d’une cavité soutercai ne dans un milieu avec radoucissement. Rev. Fr. Géotech., 1978, 4, 63-72.
  • 4. Brown E.T., Bray J.W. and Landanyi B. Ground Response Curves for Rock Tunnels. J. Geotech. Eng., 1983, 109 (1), 15-39.
  • 5. Carranza-Torres C. Elasto-plastic solution of tunnel problems using the generalized form of the hoek-brown failure criterion. Int. J. Rock Mech. Min. Sci., 2004, 41 (1), 629-639.
  • 6. Chen L., Mao X., Chen Y. and Liu D. A new unified solution for circular tunnel based on a four-stage constitutive model considering the intermediate principal stress. Adv. Civ. Eng., 2018, 2, 1-14.
  • 7. Design documentation of the mine of Lubelski Węgiel “Bogdanka” S.A. (in Polish), No 4206/17/14/133/KD. Bogdanka (Poland), 2014.
  • 8. D’Obryn K. and Tajdus A. Geomechanical numerical analysis as a guidance for preservation works of the “Wieliczka” salt mine site. Studia Geotechnica et Mechanica, 2017, 39 (2), 25-34.
  • 9. Fahimifar A. and Ranjbarnia M. Analysis of circular reinforced tunnels by analytical approach. Journal of Structural Engineering and Geotechnics, 2011, 1 (2), 45-55.
  • 10. Hoek E. Rock-support interaction analysis for tunnels in weak rock masses. Tunneling Journal, April/May, 2012, 44-49.
  • 11. Kargar A. and Rahmannejad R. An analytical solution for the ground reaction curve of brittle rocks, inclu-ding gravity. Arab. J. Geosci., 2015, 8, 1479-1486.
  • 12. Khomenko O., Kononenko M. and Bilegsaikhan J. Classification of Theories about Rock Pressure. Solid State Phenom., 2018, 277, 157-167.
  • 13. Kyung-Ho P., Bituporn T. and Joo-Gong L. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses. Tunn. Undergr. Sp. Tech., 2008, 23, 151-159.
  • 14. Lu Yan-er and Yang Wu. Analytical solutions of stress and displacement in strain softening rock mass around a newly formed cavity. J. Cent. South Univ., 2013, 20, 1397-1404.
  • 15. Marczak H. Application of the elastic-plastic model in the analysis of the displacement in a rock mass. Advances in Science and Technology Research Journal, 2018, 12 (2), 188-196.
  • 16. Mroz Z. and Krucinski S. Elastoplastic analysis of stress and displacement field in the vicinity of circular tunnel with account for degradation effect (in Polish). Arch. Min. Sci., 1984, 29, 205-229.
  • 17. Nguyen P.M.V. and Niedbalski Z. Numerical modeling of open pit (OP) to underground (UG) transition in coal mining. Studia Geotechnica et Mechanica, 2016, 38 (3), 35-48.
  • 18. 18. Oreste P. The convergence-confinement method: roles and limits in modern geomechanical tunnel design. Am. J. Appl. Sci., 2009, 6 (4), 757-771.
  • 19. Polish Committee for Standardization. Underground headings and chambers - Shell type support - Principles of designing and statistic calculations. PN-G-05600:1998P. ICS: 93.060; 73.020; 93.160. Warszawa (Warsaw), 1998.
  • 20. Polish Committee for Standardization. Underground headings and chambers - Vaulted lining - Principles of designing and static calculations. PN-G-05020:1997P. ICS: 73.020. Warsaw, 1997.
  • 21. Popovici A., Ilinca C. and Anghel C. Assessment concerning the domain of applicability of Protodiakonov method in calculus of underground structures. Mathematical Modelling in Civil Engineering, 2017, 13 (1), 21-31.
  • 22. Purwodihardjo A. and Cambou B. Effect of strain-softening on settlement due to tunnelling in soft soil, In: Rosenbaum M.S. and Turner A.K. (Eds.), New Paradigms in Subsurface Prediction. Lecture Notes in Earth Sciences, 99, Springer-Verlag, Berlin/Heidelberg, Germany, 2003, 173-188.
  • 23. Rak Z. and Stasica J. Studies of physical and mechanical properties of rocks in the in-situ conditions of the LW Bogdanka mine (in Polish). Unpublished Works. Krakow, 2005.
  • 24. Regulation of the Minister of Energy of November 23, 2016 on detailed requirements for the operation of underground mining facilities (in Polish). Dz.U. 2017 poz. 1118 – http://www.dziennikustaw.gov. pl/du/2017/1118/1
  • 25. Ruiz S., Or D. and Schymanski S.J. Soil penetration by earthworms and plant roots-mechanical energetics of bioturbation of compacted soils. PLOS ONE, 2015, 18, 1-26.
  • 26. Saeidi O., Elyasi A., Maleki S. and Fegh A. An analytical closed form solution around undeground openings using different methods. J. Applied Sci., 2012, 12 (5), 440-449.
  • 27. Serafin J.L. and Pereira J.P. Consideration of the geomechanical classification of Bieniawski. Proc. Int. Symp. Eng Geol Underground Construction (Lisbon), 1983, 1(II):33–44.
  • 28. Sharan S.K. Elastic-brittle-plastic analysis of circular openings in Hoek-Brown media. Int. J. Rock Mech. Min. Sci., 2003, 40, 817-824.
  • 29. Wang, Y. Ground response of circular tunnel in poorly consolidated rock. ASCE J. Geotech. Eng., 1996, 122 (9), 703-708.
  • 30. Wichur A. Problems of the design of the long-term excavations’ support (in Polish). Górnictwo i Geoinżynieria, 2009, 33 (3/1), 407-436.
  • 31. Xiao Wang, Guo Quan-yuan and Su Yong-hua. Anchorage mechanical effects of tunnel surrounding rock by considering post-peak characteristics. Journal of Highway and Transportation Research and Development (English Edit.), 2017, 11 (1), 49-58.
  • 32. Yang Xiao-li and Huang Fu. Influences of strain softening and seepage on elastic and plastic solutions of circular openings in nonlinear rock masses. J. Cent. South Univ. Technol., 2010, 17, 621−627.
  • 33. Zareifard M.R. and Fahimifar A. A new solution for shallow and deep tunnels by considering the gravitational loads. Acta Geotech. Slov., 2012, 2, 37-49.
  • 34. Zhao Zeng-hui, Wang Wei-ming and Gao Xin. Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation. J. Zhejiang Univ-Sci. A (Appl Phys & Eng), 2014, 15(4), 282-290.
  • 35. Zou Jin-feng, Zuo Song-qing and Xu Yuan. Solution of strain-softening surrounding rock in deep tunnel incorporating 3D Hoek-Brown failure criterion and flow rule. Math. Probl. Eng., 2016, 1-12. Retrieved September 15, 2018, from http://dx.doi. org/10.1155/2016/7947036.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00ce0c97-d766-4f92-af27-f9b5df8b6261
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.