PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study on dimensions and orientation effect of semi-elliptical cracks in PE100 pipelines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The through-thickness crack or surface crack in PE100 pipes subjected to internal pressure represents a serious risk to the structural integrity of HDPE pipes, which has attracted wide attention in modern industry. Although experimental research offers reliable predictions of surface crack influence on pipes, the relatively high cost hinders its application. The numerical simulation, as a cost-effective alternative, has been widely applied to assess stress displacement and strain to the entire pipe structure. This is the initial approach adopted in recent decades. This article provides simulations tests of an uncracked pipe and cracked PE100 pipe under different internal pressure values, with varying each time the dimensions of the crack with 1 mm rate for minor and major radius and 0.5mm rates for the largest contour radius, using ANSYS MECHANICAL STRUCTURAL STATIC for simulation.
Rocznik
Strony
198--207
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Mechanics, Department of Mechanical Engineering, University of Brothers Mentouri Constantine 1, ALGERIA
autor
  • Laboratory of Mechanics, Department of Mechanical Engineering, University of Brothers Mentouri Constantine 1, ALGERIA
Bibliografia
  • [1] Miller A.G. (1988): Review of limit loads of structures containing defects.– Int. J. Pres. Ves. Pip., vol.32, pp.197-327.
  • [2] Kim Y.J., Shim D.J., Nikbin K., Hwang S.S. and Kim J.S. (2003): Finite element based plastic limit loads for cylinders with part-through surface cracks under combined loading.– Int. J. Pres. Ves. Pip., vol.80, pp.527-540.
  • [3] Richard H.A. and Sander M. (2016): Fatigue Crack Growth.– Springer: Berlin, Germany.
  • [4] Li Z., Jiang X., Hopman H., Zhu L., Liu Z. and Tang W. (2020): Experimental investigation on FRPreinforced surface cracked steel plates subjected to cyclic tension.– Mech. Adv. Mater. Struct., DOI:10.1080/15376494.2020.1746448.
  • [5] Benhamena A., Bachir Bouiadjra B., Amrouche A., Mesmacque G., Benseddiq N. and Benguediab M. (2010): Three finite element analysis of semi-elliptical crack in high-density poly-ethylene pipe subjected to internal pressure.– Mater Des., vol.31, pp.3038-3043.
  • [6] Zitouni T.A. and Labed Z. (2019): Modeling of a crack in an internal pressure pipeline.– Proceedings of the 5th International Conference on Energy, Materials, Applied Energetics and Pollution ICEMAEP, pp.1134-1139.
  • [7] Alimi L., Ghabeche W., Chaoui W. and Chaoui K. (2012): Mechanical properties study in extruded HDPE 80 pipe wall used for natural gas distribution.– Matériaux Tech., vol.100, pp.79-86.
  • [8] Ulmanu V., Draghici G. and Aluchi V. (2011): Fracture mechanics testing of high-density polyethylene (HDPE) pipe material with compact tension (CT) specimens.– J. Eng. Stud. Res., vol.17, No.3, pp.98-103.
  • [9] ISO I. 6259. (1997): Thermoplastic Pipes-Determination of Tensile Properties.– Part 1: General Test Method.
  • [10] Djebli A., Bendouba M., Aid A., Talha A., Benseddiq N. and Benguediab M. (2015): Fatigue life prediction and damage modeling of high-density polyethylene under constant and two-block loading.– Procedia Eng., vol.101, pp.2-9, https://doi.org/10.1016/j.proeng.2015.02.002.
  • [11] Williams M.L. (1957): On the stress distribution at the base of a stationary crack.– J. Appl. Mech., vol.24, pp.109-114.
  • [12] Chao Y.J., Liu S. and Broviak B.J. (2001): Brittle fracture: variation of fracture toughness with constraint and crack curving under mode I conditions.– Exp. Mech. vol.41, No.3, pp.232-241.
  • [13] Richardson D.E. and Goree J.G. (1993): Experimental verification of a new two-parameter fracture model, in Fracture Mechanics.– ASTM International, Twenty Third Symposium pp.738-750.
  • [14] Alimi L., Ghabeche W., Chaoui W. and Chaoui K. (2012):Mechanical properties study in extruded HDPE-80 pipe wall used for natural gas distribution.– Matériaux Tech., vol.100, pp.79-86.
  • [15] Ulmanu V.A, Draghici G. and Aluchi V. (2011): Fracture mechanics testing of high-density polyethylene (HDPE) pipe material with compact tension (CT) specimens.– J. Eng. Stud. Res., vol.17, No.3, pp.98-103.
  • [16] Engineering Toolbox (2018): EN 12201 - Polyethylene (PE) pipes for water supply, and drainage and sewerage under pressure- dimensions.– [online] Available at https://www.engineeringtoolbox.com/EN 12201-PE-polyethylene-pipes-d_2135.html [Accessed 19 04. 2020].
  • [17] Deutsche Norm (1999): DIN 8074 - Polyethylene (PE) pipes Dimensions.– DIN German Institute for Standardization e. V., Berlin.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00c9bc70-6399-4f4f-b7e2-3ddf8dfc94cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.