PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase Diagrams of the Excitonic Insulator State: Analyzing the Excitonic Susceptibility

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the formation of the excitonic insulator state in the rare-earth chalcogenides has been investigated through the extended Falicov-Kimball model. Adapting the unrestricted Hartree-Fock approximation, we have derived a set of explicitly self-consistent equations determining expectation values and the excitonic susceptibility in the system. Analyzing the excitonic susceptibility, we have established phase diagrams of the excitonic insulator state depending on the model parameters. The phase structures confirmed the excitonic insulator state is found at low temperature and between two critical values of the Coulomb interaction. The effect of the external pressure on the formation of the excitonic insulator state is also shown.
Rocznik
Tom
Strony
199--206
Opis fizyczny
Bibliogr. 23 poz., wykr.
Twórcy
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
Bibliografia
  • 1. Mott, N.F., 1961. The transition to the metallic state. Philosophical Magazine, 6(62): 287-309, https://doi.org/10.1080/14786436108243318.
  • 2. Knox, R., Theory of excitons, in Solid State Physics, edited by Seitz F. and Turnbull D., Academic Press, New York, 1963.
  • 3. Kohn, W., Metals and insulator in Many Body Physics, edited by DeWitt C. & Balian R., Gordon & Breach, New York, 1968.
  • 4. Moskalenko, S.A., Snoke, D.W., 2000. Bose-Einstein Condensation of Excitons and Biexcitons. Cambridge University Press, https://doi.org/10.1017/CBO9780511721687.
  • 5. Neuenschwander, J., & Wachter, P., 1990. Pressure-driven semiconductor-metal transition in intermediate-valence TmSe1-xTex and the concept of an excitonic insulator. Physical Review B, 41(18), 12693, https://doi.org/10.1103/PhysRevB.41.12693.
  • 6. Wachter, P., Bucher, B., & Malar, J., 2004. Possibility of a superfluid phase in a Bose condensed excitonic state. Physical Review B, 69(9): 094502, https://doi.org/10.1103/PhysRevB.69.094502.
  • 7. Bucher, B., Park, T., Thompson, J.D., & Wachter, P., 2008. Thermodynamical Signatures of an Excitonic Insulator, Eprint arXiv:0802.3354.
  • 8. Kogar, A., Rak, M.S., Vig, S., Husain, A.A., Flicker, F., Joe, Y.I., Venema, L., MacDougall, G.J., Chiang, T.C., Fradkin, E., et al., 2017. Signatures of exciton condensation in a transition metal dichalcogenide. Science, 358(6368): 1314 – 1317, https://doi.org/10.1126/science.aam6432.
  • 9. Larkin, T.I., Yaresko, A.N., Pröpper, D., Kikoin, K.A., Lu, Y.F., Takayama, T., Mathis, Y.-L., Rost, A.W., Takagi, H., Keimer, B., & Boris A.V., 2017. Giant exciton Fano resonance in quasi-onedimensional Ta2NiSe5. Physical Review B, 95(19): 195144, https://doi.org/10.1103/ PhysRevB.95.195144.
  • 10. Lu, Y.F., Kono, H., Larkin, T.I., Rost, A.W., Takayama, T., Boris, A.V., Keimer, B. & Takagi, H., 2017. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nature Communication, 8, 14408, https://doi.org/10.1038/ncomms14408.
  • 11. Ihle, D., Pfafferott, M., Burovski, E., Bronold, F.X., and Fehske, H., 2008. Bound state formation and the nature of the excitonic insulator phase in the extended Falicov-Kimball model. Physical Review B, 78(19): 193103, https://doi.org/10.1103/PhysRevB.78.193103.
  • 12. Zenker, B., Fehske, H., & Batista C.D., 2010. Competing chiral and multipolar electric phases in the extended Falicov-Kimball model. Physical Review B, 82(16): 165110, https://doi.org/10.1103 /PhysRevB.82.165110
  • 13. Sugimoto, K., Satoshi, N., Tatsuya, K., & Yukinori, O., 2018. Strong Coupling Nature of the Excitonic Insulator State in Ta2NiSe5. Physical Review letter, 120(24): 247602, https://doi.org/10.1103/PhysRevLett.120.247602.
  • 14. Lee, J., Kang, C.J., Man, J.E., Jun, S.K., Byung, M., & Han, W.Y., 2019. Strong interband interaction in the excitonic insulator phase of Ta2NiSe5. Physical Review B, 99(7): 075408, https://doi.org/10.1103/PhysRevB.99.075408.
  • 15. Bronold, F.X., & Fehske, H., 2006. Possibility of an excitonic insulator at the semiconductorsemimetal transition. Physical Review B, 74(16): 165107, https://doi.org/10.1103 /PhysRevB.74.165107.
  • 16. Thang, D.V., Thao, D.T.X., 2012. Study the effect of rare earths Sm over physical Bi1-xSmxFeO3 of materials. Journal of Mining and Earth Science, 37, 86-91.
  • 17. Hai, D.T.H., Nha, N.H., Giang, N.T., & Nham, P.V., 2016. Temperature effects in excitonic condensation driven by the lattice distortion. Physica Status Solidi B, 253(6): 1210-1216, https://doi.org/10.1002/pssb.201552745.
  • 18. Hai, D.T.H., Hoi, B.D., & Nham, P.V., 2017. Phonon effects in the excitonic condensation induced in the extended Falicov-Kimball model, Europhysics Letters, 119, 47003, https://doi.org/10.1209/0295-5075/119/47003
  • 19. Hai, D.T.H., Nha, N.H., & Nham, P.V., 2019. Thermal Fluctuations in the Phase Structure of the Excitonic Insulator Charge Density Wave State in the Extended Falicov-Kimball Model, Journal of Electronic Materials, 48, 2677, https://doi.org/10.1007/s11664-018-06904-x.
  • 20. Phan, N.V., Becker, K.W., & Fehske, H., 2010. Spectral signatures of the BCS-BEC crossover in the excitonic insulator phase of the extended Falicov-Kimball model. Physical Review B, 81(20), 205117, https://doi.org/10.1103/PhysRevB.81.205117.
  • 21. Zenker, B., Ihle, D., Bronold, F.X. & Fehske, H., 2010. Existence of excitonic insulator phase in the extended Falicov-Kimball model: SO(2)-invariant slave-boson approach. Physical Review B, 81(11): 115-122, https://doi.org/10.1103/PhysRevB.81.115122.
  • 22. Phan, N.V., Fehske, H. & Becker, K.W., 2011. Excitonic resonances in the 2D extended FalicovKimball model. Euro Physics Letter, 959(1): 17006, https://doi.org/10.1209/0295-5075/95/17006.
  • 23. Wachter, P., 2018. Exciton Condensation and Superfluidity in TmSe0.45Te0.55. Advances in Materials Physics and Chemistry, 8(3): 120-142, https://doi.org/10.4236/ampc.2018.83009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00c6568e-3578-412d-8834-4dccee257127
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.