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Abstract. In this paper, the formation of the excitonic insulator state in the rare-earth chalcogenides has 

been investigated through the extended Falicov-Kimball model. Adapting the unrestricted Hartree-Fock 

approximation, we have derived a set of explicitly self-consistent equations determining expectation 

values and the excitonic susceptibility in the system. Analyzing the excitonic susceptibility, we have 

established phase diagrams of the excitonic insulator state depending on the model parameters. The phase 

structures confirmed the excitonic insulator state is found at low temperature and between two critical 

values of the Coulomb interaction. The effect of the external pressure on the formation of the excitonic 

insulator state is also shown.  
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1. Introduction   

Excitonic insulator (EI) state has been predicted to occur in semimetal (SM) and semiconductor (SC) 

materials as the quantum condensation of electron-hole pairs. Although the first theoretical was proposed 

over a half-century ago [1-3], the nature of this state still has many things yet clarity as well as the ability 

to observe the experiment remains challenging. Because of the Coulomb attraction between electrons and 

holes, excitons can be established and if the temperature is low enough with a sufficiently high density, 

these excitons can condense forming a new spontaneous macroscopic phase-coherent quantum Bose-

Einstein condensation (BEC) state [4], the so-called the excitonic insulator state. 

In recent years, investigating some mixed-valent rare-earth chalcogenides and transition metal 

dichalcogenides has strongly supported the theoretical prediction and renewed the interest in the EI state. 

For instance, electrical and thermal transport properties in the pressure-sensitive mixed-valence rare-earth 

chalcogenide TmSe0.45Te0.55 have indicated a stabilized EI state at a temperature below 20 K [5-7]. Most 

recently, by using the momentum resolved electron energyloss spectroscopy, Kogar and coworkers have 

shown evidence for the excitonic condensation in the transition metal dichalcogenide semimetal 1T-TiSe2 

[8]. Besides, experimental results of the optical conductivity also have confirmed the existence of the EI 

state in narrow-gap semiconductor system Ta2NiSe5 [9, 10].  

As an ordered state, the EI state might be distorted by the thermal fluctuations. Studying the influence 

of temperature on the EI state, therefore, is helpful. Phase diagrams depending on the temperature of the EI 

state have been experimentally reported [5, 6]. These phase diagrams show that the EI state occurs at low 

temperature with intermediate pressure around the semimetal-semiconductor transition. The phase 

diagrams of the EI state have also been addressed theoretically in a framework of the extended Falicov-

Kimball model (EFKM) which covers direct c- and f-band hopping and admits the pairing of c-electrons 

with f-holes via the Coulomb interaction [11, 12]. In the SM regime with small Coulomb interaction, 

excitons might condense like Cooper pairs in the Bardeen-Cooper-Schrieffer (BCS) theory. On the other 

hand, in the SC regime, strong Coulomb interaction might formulate tight-binding excitons which then 

possibly condense like neutral atoms as in the theory of Bose-Einstein. A smooth BCS-BEC crossover of 

the EI state in the model is then discussed. 

However, in the above studies, the description of the EI phase transition is only based on investigating 

the properties of the condensate order parameter. Moreover, recent studies of optical conductivity give us 

different views than the initial assumptions about the condensation formation of excitons. For example, in 

Ta2NiSe5 material, the optical conductivity calculated results from the density functional theory based 

electronic structure calculation and density-matrix renormalization group calculation or electronic states 

study in real space of low temperature phase release that excitons can be formed before the condensation 

happens even when the system is in the SM side [13, 14]. This is completely unconventional because one 
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always believes that this signature happens only in the SC phase, in the SM side the formation of excitons 

and their condensation state occur simultaneously [15]. Considering the excitonic susceptibility to clearly 

describe the condensation mechanism of the exciton systems is therefore necessary.  

Rare-earth metals and their compounds are mainly used in industry and defense. They are also 

increasingly used in devices serving modern life such as: computer memory, Digital Video Disc, 

rechargeable battery, mobile phone, etc. In mixed-valence rare-earth chalcogenides, an exciton binding 

state of the 4f holes with the 5d electrons can be formed. At sufficiently low temperature, those excitons 

condense into the EI state. The effective mass of excitons is so small that they can condense at much higher 

temperatures than BEC critical temperature of atoms. Therefore, these material systems are being studied 

extensively in both science and technology [16]. In the present work, the EI state in rare-earth chalcogenides 

is discussed in the framework of the spinless EFKM, in which the hopping of the f electrons is involved. 

Using the unrestricted Hartree‐Fock approximation, we obtain a set of self‐consistent equations which 

allows us to determine the excitonic susceptibility function. From signatures of the static excitonic 

susceptibility function, we discuss in detail the phase structures of the EI state due to Coulomb attraction 

at low temperature. 

This paper is organized as follows. In section 2, we introduce the theoretical approach of the present 

work. Here we present the 2D extended Falicov-Kimball model. and the unrestricted Hartree-Fock 

approximation developed for this model. In section 3, we outline numerical results where the phase 

diagrams of the EI state in the system are addressed. The conclusion is given in section 4.  

 

2. Theoretical approach 

In order to consider the electron-hole system in rare-earth chalcogenides, we use the EFKM with the 

Hamiltonian  

ℋ = ℋ0 + ℋ𝑖𝑛𝑡 (1) 

with the non-interacting part of the electron system is given 

ℋ0 = ∑ 𝜀𝐤
𝑐𝑐𝐤

†𝑐𝐤

𝐤

+ ∑ 𝜀𝐤
𝑓

𝑓𝐤
†𝑓𝐤

𝐤

 (2) 

where 𝑐𝐤
†(𝑐𝐤) and 𝑓𝐤

†(𝑓𝐤) are the creation (annihilation) operators of c and f electrons carrying momentum 

k, respectively. The electronic excitation energies in the tight-binding approximation are given by 

𝜀𝐤
𝑐(𝑓)

= 𝜀𝑐(𝑓) − 𝑡𝑐(𝑓)𝛾𝐤 − 𝜇 (3) 

with 𝜀𝑐(𝑓) are the on-site energies, 𝑡𝑐(𝑓) are the nearest-neighbor particle transfer amplitudes, and µ denotes 

the chemical potential. In two-dimensional hypercubic lattice, the nearest-neighbor hopping 𝛾𝐤 reads 𝛾𝐤 =
 2(𝑐𝑜𝑠𝑘𝑥 + 𝑐𝑜𝑠𝑘𝑦). 

The interacting part of the Hamiltonian ℋ𝑖𝑛𝑡 reads 

ℋ𝑖𝑛𝑡 =
𝑈

𝑁
∑ 𝑐𝐤+𝐪

† 𝑐𝐤′𝑓𝐤′−𝐪
† 𝑓𝐤

𝐤,𝐤′,𝐪

 (4) 

here U is the Coulomb interaction between conduction c electrons and valence f electrons and N counts the 

number of lattice sites. In general, c – c and f – f Coulomb interactions might have been taken into account 

in the interaction part of the Hamiltonian in Eq. (4). However, the additional interactions only lead to mere 

shifts in the one-particle electronic dispersions and they are neglected from now in our study. Here, we 

assume that a c - f electron bounding state is equivalent to an exciton state. 

Using Hartree-Fock approximation, we introduce the fluctuation operator δA = A – 〈𝐴〉 for an arbitrary 

operator A, and write the Coulomb interaction operator in Eq. (4) as 

𝑐𝐤+𝐪
† 𝑐𝐤′𝑓

𝐤′−𝐪
† 𝑓𝐤 = [〈𝑓𝐤

†𝑓𝐤〉𝑐
𝐤′
† 𝑐𝐤′ + 〈𝑐

𝐤′
† 𝑐𝐤′〉𝑓𝐤

†𝑓𝐤] 

+[〈𝑐𝐤+𝐪
† 𝑓𝐤〉𝑓

𝐤′−𝐪
† 𝑐𝐤′ + 〈𝑓

𝐤′−𝐪
† 𝑐𝐤′〉 𝑐𝐤+𝐪

† 𝑓𝐤] 
(5) 
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+[〈𝑐𝐤+𝐪
† 𝑓𝐤〉〈𝑓𝐤′−𝐪

† 𝑐𝐤′〉 − 〈𝑐𝐤+𝐪
† 𝑐𝐤′〉〈𝑓𝐤′−𝐪

† 𝑓𝐤〉] 

Here, we only focus on the formation and condensation of excitons with momentum q. Therefore, 

constants here have been neglected in the approximation. In this case, the Hamiltonian in Eq. (1) reduces 

to the so-called Hartree-Fock Hamiltonian, which can be read  

ℋ𝐻𝐹 = ∑ 𝜀�̅�
𝑐𝑐𝐤

†𝑐𝐤

𝐤

+ ∑ 𝜀�̅�
𝑓

𝑓𝐤
†𝑓𝐤

𝐤

+ ⋀ ∑(𝑐𝐤+𝐪
† 𝑓𝐤 + 𝑓𝐤

†𝑐𝐤+𝐪)

𝐤

 (6) 

here, the electronic excitation energies now have acquired Hartree shifts 

𝜀�̅�
𝑐(𝑓)

= 𝜀𝐤
𝑐(𝑓)

+ 𝑈𝑛𝑓(𝑐) (7) 

with 𝑛𝑓 =
1

𝑁
∑ 〈𝑓𝐤

†𝑓𝐤〉𝐤 ;  𝑛𝑐 =
1

𝑁
∑ 〈𝑐𝐤

†𝑐𝐤〉𝐤  are the densities of f- and c- electrons, respectively, where 

〈𝑐𝐤
†𝑐𝐤〉 =

1

1 + 𝑒𝛽�̅�𝐤
𝑐 = 𝑛𝐹(𝜀�̅�

𝑐) 

〈𝑓𝐤
†𝑓𝐤〉 =

1

1 + 𝑒𝛽�̅�𝐤
𝑓

= 𝑛𝐹(𝜀�̅�
𝑓

) 
(8) 

Here, 𝑛𝐹() is the Fermi-Dirac distribution function 𝑛𝐹() =
1

1+𝑒𝛽 with β = 1/T being the inverse of 

the temperature. 

In effective Hamiltonian (6), ⋀ is an additional field, reads 

⋀ = −
𝑈

𝑁
∑〈𝑐𝐤+𝐪

† 𝑓𝐤〉

𝐤

 (9) 

acts as an order parameter of the EI state. In previous letters, we addressed the EI phase diagrams and also 

the BCS-BEC crossover in the exciton systems via investigating the properties of the EI order parameter 

[17-19]. In this paper, we analyze the excitonic susceptibility creating an electron-hole excitation with 

momentum q in the system. The excitonic susceptibility function in momentum space is defined 

𝜒(𝐪, 𝜔) = −
1

𝑁
∑ 〈〈𝑓𝐤

+𝑐𝐤+𝐪;  𝑐𝐤′+𝐪
+ 𝑓𝐤′〉〉(𝜔)

𝐤,𝐤′

 (10) 

Using Hamiltonian (1) and writing the equation of motion for two-particle Green’s function, we get 

𝜔 〈〈𝑓𝐤
+𝑐𝐤+𝐪;  𝑐𝐤′+𝐪

+ 𝑓𝐤′〉〉(𝜔) = 〈𝑛𝐤
𝑓〉 − 〈𝑛𝐤+𝐪

𝑐 〉 

+( 𝜀𝐤+𝐪
𝑐 − 𝜀𝐤

𝑓
) 〈〈𝑓𝐤

+𝑐𝐤+𝐪; 𝑐𝐤′+𝐪
+ 𝑓𝐤′〉〉(𝜔)

 

−
𝑈

𝑁
∑ 〈〈(𝑓𝐤

+𝑐𝐤1
𝑓𝐤1−𝐪1

+ 𝑓𝐤+𝐪−𝐪1
− 𝑐𝐤+𝐪1

+ 𝑐𝐤1
𝑓𝐤1−𝐪1

+ 𝑐𝐤+𝐪); 𝑐𝐤′+𝐪
+ 𝑓𝐤′〉〉(𝜔)

𝐤1𝐪1

 

(11) 

 According to the principles of Hartree-Fock approximation, the excess operators in the higher order 

Green’s functions are replaced by averages: 

∑ 〈〈𝑓𝐤
+𝑐𝐤1

𝑓𝐤1−𝐪1

+ 𝑓𝐤+𝐪−𝐪1
;  𝑐𝐤′+𝐪

+ 𝑓𝐤′〉〉(𝜔)

𝐤1𝐪1

= ∑ 〈𝑛𝐤+𝐪−𝐪𝟏

𝑓 〉 〈〈𝑓𝐤
+𝑐𝐤+𝐪;  𝑐𝐤′+𝐪

+ 𝑓𝐤′〉〉(𝜔)

𝐪1

 

− ∑〈𝑛𝐤
𝑓〉 〈〈𝑓𝐤𝟐

+ 𝑐𝐤𝟐+𝐪;  𝑐𝐤′+𝐪
+ 𝑓𝐤′〉〉(𝜔)

𝐤𝟐

 

(12) 

∑ 〈〈𝑐𝐤+𝐪1

+ 𝑐𝐤𝟏
𝑓𝐤1−𝐪1

+ 𝑐𝐤+𝐪;  𝑐𝐤′+𝐪
+ 𝑓𝐤′〉〉(𝜔)

𝐤1𝐪1

 
(13) 
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= ∑〈𝑛𝐤+𝐪𝟏

c 〉 〈〈𝑓𝐤
+𝑐𝐤+𝐪;  𝑐𝐤′+𝐪

+ 𝑓𝐤′〉〉(𝜔)

𝐪1

 

− ∑〈𝑛𝐤+𝐪
𝑐 〉 〈〈𝑓𝐤𝟐

+ 𝑐𝐤𝟐+𝐪;  𝑐𝐤′+𝐪
+ 𝑓𝐤′〉〉(𝜔)

𝐤𝟐

 

Replacing Eqs.(12) and (13) into Eq.(11), we obtain 

(𝜔 − 𝜔𝐤
𝑐𝑓(𝐪)) 〈〈𝑓𝐤

+𝑐𝐤+𝐪;  𝑐𝐤′+𝐪
+ 𝑓𝐤′〉〉(𝜔)

 

= (〈𝑛𝐤
𝑓〉 − 〈𝑛𝐤+𝐪

𝑐 〉) −
𝑈

𝑁
(〈𝑛𝐤

𝑓〉 − 〈𝑛𝐤+𝐪
𝑐 〉) ∑ 〈〈𝑓𝐤𝟐

+ 𝑐𝐤𝟐+𝐪;  𝑐𝐤′+𝐪
+ 𝑓𝐤′〉〉(𝜔)

𝐤2

 (14) 

with 𝜔𝐤
𝑐𝑓

(𝐪) =  𝜀�̅�+𝐪
𝑐 − 𝜀�̅�

𝑓
 

Finally, we sum over k Eq. (14) and rename summation indices, the excitonic susceptibility function in 

Eq. (10) can be written 

𝜒(𝐪, 𝜔) =
𝜒0(𝐪, 𝜔)

1 + 𝑈𝜒0(𝐪, 𝜔)
 (15) 

with 

𝜒0(𝐪, 𝜔) =
1

𝑁
∑

〈𝑛𝐤
𝑓〉 − 〈𝑛𝐤+𝐪

𝑐 〉

𝜔 − 𝜔𝐤
𝑐𝑓

(𝐪)
𝐤

 (16) 

here 〈𝑛𝐤
𝑓〉 = 〈𝑓𝐤

†𝑓𝐤〉 and 〈𝑛𝐤
𝑐 〉 = 〈𝑐𝐤

†𝑐𝐤〉 have been defined in Eq. (8). 

In order to determine the EI phase, we compute the static excitonic susceptibility 𝜒(𝐪, 𝜔) with 𝜔 =  0. 
And in this work, we consider the direct bandgap situation so the order vector of the EI phase as q = 0. 

Therefore, we focus on the condition for the divergence of the static excitonic susceptibility 𝜒0 = 𝜒(𝟎, 0) 

with respect to the temperature and the Coulomb interaction potential. 

 

3. Numerical results and Discussions  

To analyze the phase structure of the EI state, in this section, we present numerical results investigating 

the forming of the EI state in the system caused by the Coulomb interaction and the temperature. The value 
of excitonic susceptibility represents the exciton fluctuations in the system, in this work, therefore, the 

formation of the EI phase is indicated by the divergence of the static excitonic susceptibility 𝜒0. In doing 

so, the Eqs. (7), (8), (15) and (16) are solved self-consistently for a system containing N = 500 × 500 lattice 

sites. The solution of the whole self-consistent calculation is assumed to be achieved if all quantities are 

determined with a relative error less than 10−12. In our numerical calculation, the results are evaluated in 

the natural unit system for ℏ = 𝑐 = 𝑘𝐵 = 1 and without loss of generality all energies are given in units of 

the c electron transfer amplitude 𝑡𝑐, i.e., 𝑡𝑐 =1. In this work, we choose 𝜀𝑐 = 0 and 𝑡𝑓 = 0.4 < 𝑡𝑐 to fit 

the electron system state in rare-earth chalcogenide TmSe0.45Te0.55. 

To discuss the impact of the temperature and the Coulomb interaction on the EI phase structure in the 

system, firstly, we show in Fig. 1 the dependence of the static excitonic susceptibility 𝜒0 on the Coulomb 

interaction U for various values of the temperature T at 𝜀𝑓 = −1.5. We see that the static excitonic 
susceptibility function only diverges or the EI phase only stabilizes at low temperature. At high 

temperature such as T = 0.5, the bound state of the electron–hole pairs is suppressed by the thermal 

fluctuations indicated by finite values of the static excitonic susceptibility for all values of U. In other 
words, at low temperature we always find the divergence of the static excitonic susceptibility at two 
critical values of the Coulomb interaction Uc1 and Uc2. This means that the EI state only occurs in a 

confined between two critical values of the Coulomb interaction. Indeed, for U < Uc1 the weak Coulomb 
can neither form excitonic bound states nor establish the electron-hole coherence, the system settles in the 

SM state. Increasing U, the EI phase stabilizes above a critical Coulomb interaction Uc1. Similar to some 

recent studies [18-22], we also yield the upper critical value of the Coulomb interaction Uc2, such that the 

EI phase is confined in between Uc1 and Uc2. As the temperature increases, Uc1 increases while Uc2 
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decreases, so the window of the EI phase is narrowed. When U > Uc2, the Hartree shift leads to an 

electron-hole band splitting, that prevents c-f electron coherence and the system will be stable in the SC 
state.  

 

Fig. 1. The static excitonic susceptibility 𝜒0 as functions of the Coulomb interaction U for several 

values of temperature T. 

Next, we discuss in detail the influence of the temperature on the EI state by investigating the 
dependence of the static exciton susceptibility function 𝜒0 on the temperature T for some values of 
the Coulomb interaction U at 𝜀𝑓 = −1.5 in Fig. 2. In the entire range of Coulomb interactions, we find that 
at a given Coulomb interaction, the static exciton susceptibility function increases as decreasing 
temperature. In particular, in low temperature region, the static exciton susceptibility increases 
strongly and diverges at a critical temperature TEI. This is called the EI phase transition temperature. As 

T > TEI all excitonic bound states are deformed and the system is in the normal electron–hole liquid state. 

When T < TEI, the system stabilizes in the EI state. Comparing the two panels in Fig. 2 (a and b), we once 

again affirm that the EI state is only occurred in between two critical values of the Coulomb interaction, a 

lower critical value Uc1 and an upper critical value Uc2. The diagram also shows that if U < 3.5, the EI state 

exists at low temperature and the critical temperature TEI increases as increasing U (see Fig. 2a), whereas 

TEI decreases if enlarging from U = 4.5 (see Fig. 2b). In particular, if U < 1.0 or U > 5.5, the value of the 
static excitonic susceptibility function is so small and remains finite for all T. 

 

Fig. 2. The static excitonic susceptibility 𝝌𝟎 as functions of the temperature T for several values of 

the Coulomb interaction U. 

In order to confirm the existence of the EI state depending on the external pressure, we now present in 

Fig. 3 the static excitonic susceptibility 𝜒0 as functions of the temperature T for different values of f-

electron on-site energy 𝜀𝑓 at the Coulomb interaction U = 3.5. Obviously, at a given 𝜀𝑓, the formation of 

the EI phase is indicated by the divergence of 𝜒0 at the critical temperature TEI. The diagram again shows 
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that the EI phase is only established at sufficiently low temperature. Increasing temperature, the large 

thermal energy destroys a part of the c - f electron bounding state leading to the EI state is weakened, which 

is illustrated by a decrease of the 𝜒0. As the temperature is larger than the critical temperature TEI, the 

large thermal fluctuation breaks all the electron–hole couplings and the system settles in the electron–hole 

plasma liquid, and 𝜒0 thus becomes insignificant. Fig. 3 also shows that the critical temperature TEI increases 

when increasing 𝜀𝑓. Indeed, as 𝜀𝑓 is increased, the overlap between the f-bands and c-bands increases, then 

some f electrons can be transferred into c-band electrons and exciton bound states may be formed if the 

Coulomb interaction is sufficiently strong, therefore TEI increases. In fact, the overlap between the energy 

bands represents the effect of the external pressure on the system. Therefore, increasing 𝜀𝑓 is corresponding 

to an increase of the external pressure. Our result about the influence of the temperature and the external 

pressure on the EI state fits quite well with the experimental observation in rare-earth chalcogenide 

TmSe0.45Te0.55 of P. Wachter [23]. At sufficiently large pressure, 4f- and 5d-bands overlap, then electrons 

from the f-band, which have been thermally excited into the 5d conduction band so 4f-holes couple to 5d-

electrons to form excitons and then they can drop into the EI state if the temperature is sufficiently low. 

 

Fig. 3. The static excitonic susceptibility 𝜒0 as functions of the temperature T for different values of the 

on-site energy. 

 

4. Conclusions 

In this paper, we have adapted the unrestricted Hartree-Fock approximation to the 2D extended Falicov-

Kimball model to investigate the EI state in rare-earth chalcogenides via analyzing the static excitonic 

susceptibility. As functions of model parameters, the phase diagrams of the EI state have been constructed. 

By analyzing the static excitonic susceptibility, we have found that when decreasing temperature, the 

exciton fluctuations strongly increase, especially near the temperature of the phase transition. As the 

temperature is low enough, the static excitonic susceptibility diverges which represents the EI phase 

transition. The critical temperature of the EI phase transition TEI increases as increasing the Coulomb 

interaction U in the weak interaction regime. In contrast, TEI decreases as increasing U in the strong 

Coulomb interaction regime. Our numerical results also have shown that at a given low temperature, the EI 

phase is found in between two critical values of the Coulomb interaction. When increasing temperature, the 

EI phase window is narrowed. In particular, the influence of the external pressure on forming of the EI state 

in the system also has been addressed. The phase diagram indicates that the EI state is formed only if the 

external pressure is sufficiently large. Considering more meticulously kinetic nature of the EI state in these 

materials would be a worthwhile goal of our studies in the future.  
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