PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-temperature oxidation of cast steel in water vapour

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wysokotemperaturowe utlenianie staliwa w parze wodnej
Języki publikacji
EN
Abstrakty
EN
The article presents the results of studies of the oxidation process conducted at 900°C for 12 hours in an atmosphere of water vapour on cast heat-resistant steel with a diversified structure (ferritic-austenitic, austenitic, and austenitic with carbides). Based on the studies of oxidation kinetics, it was found that samples were oxidized in approximation with the rules of linear law. Depending on the chemical composition and structure of tested alloys, the scale formed on the alloy surface had different properties. In the tested material characterised by a ferritic-austenitic structure, the tendency of the scale to detach from the surface of the metallic substrate was observed. It was probably due to different coefficients of the thermal expansion of austenite and ferrite.
PL
Praca prezentuje wyniki badań utleniania w atmosferze pary wodnej staliwa żaroodpornego o różnej strukturze (ferrytyczno-austenitycznej, austenitycznej i austenitycznej z węglikami) w temperaturze 900°C w ciągu 12 godzin. Na podstawie badań kinetyki utleniania stwierdzono, że badane próbki utleniały się w przybliżeniu zgodnie z prawem liniowym. W zależności od składu chemicznego i struktury badanych stopów obserwowano odmienne właściwości powstałych zgorzelin. W przypadku materiału o strukturze ferrytyczno-austenitycznej stwierdzono odpadanie zgorzeliny od powierzchni rdzenia metalicznego związane prawdopodobnie z różnym współczynnikiem rozszerzalności cieplnej austenitu i ferrytu.
Rocznik
Strony
61--70
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Cast Alloys and Composites Engineering, Reymonta 23 Str., 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Cast Alloys and Composites Engineering, Reymonta 23 Str., 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Cast Alloys and Composites Engineering, Reymonta 23 Str., 30-059 Krakow, Poland
autor
  • Foundry Research Institute, Centre for High Temperature Studies, ul. Zakopiańska 73, 30-418 Krakow, Poland
autor
  • Foundry Research Institute, Centre for High Temperature Studies, ul. Zakopiańska 73, 30-418 Krakow, Poland
Bibliografia
  • 1. Głownia, J. (2002). Odlewy ze stali stopowej – zastosowanie. Kraków: Fotobit.
  • 2. PN-EN 10295:2004 – Odlewy ze staliwa żaroodpornego.
  • 3. Dobrzański, L. (red.). (2011). Leksykon materiałoznawstwa. Tom 1. Warszawa: Verlag Dashofer.
  • 4. Kofstad, P. (1988). High temperature corrosion. London: Elsevier Applied Science.
  • 5. Sultan, A., Karakaya, I., Erdoğan, M. (2012). Influence of water vapour on high temperature oxidation of steels used in petroleum refinery heaters. Mater. Corros., 63(2), 119−126.
  • 6. Mu, N., Jung, K. Y., Yanar, N. M., Meier, G. H., Pettit, F. S., Holcomb, G. R. (2012). Water vapor effects on the oxidation behavior of Fe–Cr and Ni–Cr alloys in atmospheres relevant to oxy-fuel combustion. Oxid. Met., 78(3), 221−237.
  • 7. Douglass, D. L., Kofstad, P., Rahmel, A., Wood, G. C. (1996). International workshop on high-temperature corrosion. Oxid. Met., 45(5−6), 529−620.
  • 8. Mrowiec, S. (1982). Kinetyka i mechanizm utleniania metali. Katowice: Śląsk.
  • 9. Asteman, H., Svensson, J. E., Johansson L. G. (2002). Evidence for chromium evaporation influencing the oxidation of 304L. The effect of temperature and flow rate. Oxid. Met., 57(3−4), 193−216.
  • 10. Asteman, H., Svensson, J. E., Johansson, L. G., Norell, M. (1999). Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapour. Oxid. Met., 52(1−2), 95−111.
  • 11. Asteman, H., Svensson, J. E., Norell, M., Johansson, L. G. (2000). Influence of water vapour and flow rate on the high-temperature oxidation of 304L. Effect of chromium oxide hydroxide evaporation. Oxid. Met., 54(1−2), 11−26.
  • 12. Ehlers, J., Young, D. J., Smaardijk, E. J., Tyagi, A. K., Penkalla, H. J., Singheiser, L., Quadakkers, W. J. (2006). Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments. Corros. Sci., 48(11), 3428−3454.
  • 13. Rakowski, J. M., Pint, B. (2000). Observations on the effect of water vapour on the elevated temperature oxidation of austenitic stainless steel foil. Proceedings of Corrosion 2000, NACE Paper 00-517.
  • 14. Mrowec, S., Werber, T. (1974). Korozja gazowa metali. Katowice: Śląsk.
  • 15. Pint, B., Rakowski, J. M. (2000). Effect of water vapour on the oxidation resistance of stainless steels. Presented at NACE Corrosion 2000, Orlando, NACE Paper 00-259, 1−14.
  • 16. Otsuka, N., Shida, Y., Fujikawa, H. (1989). Internal-external transition for the oxidation of Fe-Cr-Ni austenitic stainless steels in steam. Oxid. Metals, 32(1−2), 13−45.
  • 17. Jurasz, Z., Adamaszek, K., Janik, R., Grzesik, Z., Mrowec, S. (2009). High temperature corrosion of valve steels in atmosphere containing water vapour. J. Solid State Electrochem., 13(11), 1709−1714.
  • 18. Piehl, C., Tökei, Z., Grabke, H. J. (2001). Surface treatment and cold working as tools to improve oxidation behaviour of chromium steels. Mater. Sci. Forum, 369−372, 319−326.
  • 19. Peraldi, R., Pint, B. A. (2004). Effect of Cr and Ni contents on the oxidation behaviour of ferritic and austenitic model alloys in air with water vapour. Oxid. Met., 61(5−6), 463−483.
  • 20. Restrepo Garcés, G., Le Cose, J., Garin, J. L., Mannheim, R. L. (2004). σ-phase precipitation in two heat-resistant steels – influence of carbides and microstructure. Scripta Mater., 50(5), 651−654.
  • 21. Garin, J. L., Mannheim, R. L. (2009). Sigma-phase precipitation upon industrial-like heating of cast heat-resistant steels. J. Mater. Proces. Tech., 209(7), 3143−3148.
  • 22. Przybyłowicz, K. (2003). Metaloznawstwo. Warszawa: Wydawnictwa Naukowo-Techniczne.
  • 23. Sourmail, T. (2001). Precipitation in creep resistant austenitic stainless steels. Mater. Sci. Tech., 17, 1−14.
  • 24. Barbabela, G. D., de Almeida, L. H., da Silveira, T. L., Le May, I. (1991). Phase characterization in two centrifugally cast HK stainless steel tubes. Mater. Charact., 26(1), 1−7.
  • 25. de Almeida Soares, G. D., de Almeida, L. H., de Silveira, T. L., Le May, I. (1992). Niobium additions in HP heat resistant cast steels. Mater. Charact., 29(3), 387−396.
  • 26. Callister, W. D. (2003). Materials science and engineering. An introduction. 6th edition. Hoboken: John Wiley&Sons, Inc.
  • 27. Taneichi, K., Narushima, T., Iguchi, Y., Ouchi, C. (2006). Oxidation or nitridation behavior of pure chromium and chromium alloys containing 10 mass%Ni or Fe in atmospheric heating. Mater. Trans., 47(10), 2540−2546.
  • 28. Pang, X., Gao, K., Yang, H., Qiao, L., Wang, Y., Volinsky, A. A. (2007). Interfacial microstructure of chromium oxide coatings. Adv. Eng. Mater., 9(7), 594−599.
  • 29. Takeda, M., Onishi, T., Nakakubo, S., Fujimoto, S. (2009). Physical properties of iron-oxide scales on Si-containing steels at high temperature. Mater. Trans., 50(9), 2242−2246.
  • 30. Qu, W., Jian, L., Hill, J. M., Ivey, D. G. (2006). Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects. J. Power Sources, 53(1), 114−124.
  • 31. Mrowiec, S., Werber, T. (1968). Nowoczesne materiały żaroodporne. Warszawa: Wydawnictwa Naukowo-Techniczne.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00c42ce6-e555-42a0-be40-71821f25aecd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.