
21

PREREQUISITES FOR EFFECTIVE 

REQUIREMENTS MANAGEMENT

Konrad Grzanek

IT Institute, Academy of Management, Łódź, Poland
kgrzanek@swspiz.pl, kongra@gmail.com

Abstract

Despite an undeniable progress in the whole software creation process, software
development is still more art than science. The requirements analysis is a highly
critical step in the software life-cycle. Requirement managements errors are the
most common errors in the software projects. The proper and effective
requirements management saves the overall project costs. The key motivation
behind this work was opening a way of finding approaches to managing the
requirements appearing in such large software projects as compilers for various
programming languages. This paper is an introduction to a full presentation of
requirements management solution in which the requirements and
implementation information is placed directly in the source code. We
concentrate on describing a context in which the requirements management
process takes place, trying to present the most interesting existing solutions,
indicating the problems and opening a discussion on what ways to follow in the
future scientific research.

Key words: requirements engineering, requirements abstraction, functional
programming

1 The State of the Art in Requirements Management

According to the commercial surveys conduced back in the ’90s an aver-
age US software project overran its budgeted time by 190%, it’s budgeted
costs by 222%, and delivered only 60% of the planned functionality. Only 
16% of projects were delivered at the estimated time and cost, and 31% of
projects were canceled before delivery, with larger companies performing
much worse than smaller ones (source: [1]). Martyn Thomas also mentions:



Grzanek K.

22

„A UK survey, published in the 2001 Annual Review of the British
Computer Society showed a similar picture. Of more than 500 develop-
ment projects, only three met the survey’s criteria for success. In 2002,
the annual cost of poor quality software to the US economy was esti-
mated at $60B.”

Despite an undeniable progress in the whole software creation process,
software development is still more art than science (after [3]). Most research-
ers point out the following causes of software process failures [3]:
- Poor requirements management. We forge ahead with development lack-

ing user input and without a clear understanding of the problem we are at-
tempting to solve.

- Poor change management. Changes to requirements and other develop-
ment products are inevitable; yet we rarely track them or understand their
impact.

- Poor quality control. We have poor measures for system quality, little
knowledge of processes that affect quality, and no feedback to modify the
process after witnessing the effects of a particular development strategy.

- Little control of schedules and costs. Accurate planning is the exception
while unrealistic expectations are the norm.

It is a fact universally acknowledged in the software engineering world
that requirements analysis is a highly critical step in the software life-cycle
[2]. The lack of the ability to specify, control and manage the software project
requirements causes the loss of control over the overall system behavior, it’s
design and quality [3]. The proper and effective requirements management
saves the overall project costs due to the following reasons (as stated in [3]):
- Requirement errors typically cost well over 10 times more to repair than

other errors.
- Requirement errors typically comprise over 40% of all errors in a software 

project.
- Small reductions in the number of requirement errors pay big dividends in

avoided rework costs and schedule delays.

Moreover, the requirement managements errors are the most common er-
rors in the software projects. No wonder the issue is seen as one of the funda-
mental issues in the field both by scientific researches as well as organizations
like Software Engineering Institute (SEI) with their Capability Maturity Mod-
el. In CMM the requirements management is one of the first steps to achiev-
ing process maturity and the key area that must be addressed to move from
Level 1 to Level 2 [3].

We define a requirement as a capability or feature needed by a user to
solve a problem or achieve an objective. There are two major kinds of re-



Prerequisites for Effective ...

23

quirements, the functional and the non-functional ones (abbreviated NFR).
Some management approaches try to treat these two categories uniformly, but
often they are treated separately due to their apparent differences in nature (e.
g. [4]) - the functional requirements specify each function that a system must
be capable of performing, whereas the NFRs specify how the system is going
to be implemented to achieve it’s goals and what it’s quality attributes will be.

The requirements engineering as defined in [5] and [6] is:

„the branch of software engineering concerned with the real-world goals
for, functions of, and constraints on software systems. It is also con-
cerned with the relationship of these factors to precise specifications of
software behavior, and to their evolution over time and across software 
families.”

This discipline inevitably breaks the borders of multiple system views, be-
cause – as stated in [6] - software cannot function in isolation from the envi-
ronment in which it operates and in which it is embedded. So in fact the re-
quirements engineering may be treated as a branch of systems engineering.
The paper [6] also states that requirements may and should undergo formal
treatment, i. e. the formal description and reasoning. Present article addresses
the problem of the formal describing and managing the requirements in a per-
sistent way.

Works by Zave and Jackson expose similar conclusions related to the mul-
tidisciplinary character of requirements engineering. In [7] the authors put
a particular emphasis on the impact of the environment onto the requirements
engineering process. They state that the descriptions of the requirements
should be in fact the environment’s descriptions. Another problem they try to
address are the implementation bias while defining the requirements (espe-
cially in the early stages/high abstraction layers) and the role of knowledge
management in the whole process. Some design and implementation 
achievements presented in the present paper loosely refer to the knowledge
management area.

Hofmann and Lehner [8] underline the unquestionable importance of pos-
sessing a deep domain knowledge on increasing the probability of software
project success. Consequently the requirements engineering is the key factor
here, together with the experts’ knowledge as well as the stakeholders’ com-
petence. According to this the requirements engineering is a multidisciplinary 
and highly competence-demanding field.

This multidisciplinary character refers also to the possible applications for
the requirements management. The discipline is by no means limited to the
software domain. The paper [9] describes a requirements management frame-
work that enables health information custodians (HIC) to document and track
compliance with privacy legislation as the legislation and hospital business 



Grzanek K.

24

processes evolve. An interesting graphical notation called the User Require-
ments Notation (URN) is given there together with it’s major complementary
notations, namely the Goal-oriented Requirements Language and Use Case
Maps.

Requirements representation is very important with respect to the potential
algorithmic processing. For example [11] gives a broad and systematic review
of existing literature works that transform textually represented requirements 
into analysis model. The major reason is rooted in model transformation being
one of the basic principles of Model Driven Architecture. According to the
paper building a software system consists of a sequence of transformations,
starting from requirements and ending with implementation. The problem of
textual representations and processing of requirements will also be addressed
further in our works.

In [10] there are mentioned the relations between requirements and high-
level testing methodology called Abstract Testing. The article states that „[...]
often a one-to-one correspondence between abstract test cases (resp. verifica-
tion scenarios) and requirements can be achieved, which links abstract testing
much more closely to the requirements and facilitates construction and main-
tenance of abstract test cases”. The interesting feature of this methodology as 
a whole is an existence of a close relationship of the verification scenarios
(and so – indirectly – the requirements) to the source code by the fact of an
automatic checking the scenarios against the sources performed by a source 
model checker.

The requirements modeling with a combination of SysML and UML are
described in [12]. The work is of a special significance because it presents the
problem in the context of real-time systems specification. A classification of
user requirements is also proposed there.

2 The Idea of Source Code as the Requirements Database

Now we should take a look at the existing approaches and tools automat-
ing the requirements management. According to [16] most requirements man-
agement tools perform the same core functions:
- They allow the system developer to import large documents from a variety

of standard word processing formats.
- These documents can be split up into separately managed document ele-

ments.
- The document elements are subject to a rigorous change and version con-

trol regime.
- Relations can be established between document elements and attributes 

can be associated with the document elements and often the relations.



Prerequisites for Effective ...

25

- A variety of document views can be generated using both attributes and 
relations, generally specific traceability views such as traceability matric-
es.

- Document templates can be set up and used to create new composite doc-
uments.

- Scripting or query languages provide support for the retrieval of informa-
tion and the development of project specific views.

- Simple checks to ensure structural integrity of documents may be per-
formed.

An apparent importance of attribution and labeling shows up. In fact, the
labels are the core of our planned approach. The tool we start working on will
also possess an effective querying mechanisms.

When referring to the architecture of requirements management tools [16]
states that these tools have much in common: „They are generally based on
a document repository, which may either be hosted on top of an industry stan-
dard database (relational or object-oriented) or a specifically crafted file store
[...]. Most tools provide some simple control for multi-party editing of docu-
ments, the granularity of this control is dependent upon the underlying reposi-
tory. At the front end, the tools generally appear similar to standard document
processors. From a user interface standpoint, they provide a number of tools
to support work with large hierarchical documents including the ability to 
work seamlessly in different document views.”

[16] notices a very important weakness of these tools; they are in general
process-free. The obvious yet not fully realized yet solution is „to integrate
requirements management tools with a work-flow or process engine. Despite
this being an obvious answer it is not very straightforward to achieve.” One
possible solution would make a step towards integrating programmers’ per-
sonal information management with requirements management and their basic
professional activity: working on the source code of implemented systems.

More features of an ideal requirements management system are presented
in [17]. They extend the list of previously mentioned desired features with
such elements as:
- Using effective information models
- Supporting various views of the same data
- Handling formal change requests for the requirements
- Keeping the history of requirements change
- Allowing base-lining
- Effective tool integration

and many more.
The key motivation behind this work was finding a way to manage the re-

quirements appearing in such large software projects as compilers for various



Grzanek K.

26

programming languages. The Java 6 Language Specification is over 600-
pages document containing lots of facts about the Java language run-time and
compiler. Our goal is to deal with all those facts in an organized way. There 
are the following conclusions related to our situation:
1. There are huge amounts of facts in such a system, expected number reach-

es thousands of facts.
2. The facts are distributed, spread around many chapters of the source doc-

ument. It closely resembles real-life situations that may appear in software
projects of different nature.

3. Some information may be ambiguous and their transformation into the
requires an active support from the programmer/designer.

4. The modules of the system described by these facts will be implemented
by single developers who must have a clear view of what is to be done.

5. The requirements management system should not only help the program-
mer to organize these large volumes of information, but should also give
him some help during the process of organizing facts.

We decided to use a unique approach of integrating the requirements man-
agement with source code. This approach is inspired by a homo-iconicity of
the languages from the Lisp family of programming languages. Our solution
is an embedded domain-specific language based on Clojure [18]. This DSL
wins the following for the analysts, designers and programmers:
- Editing source code is a primary activity every programmer undertakes on

every work-day. Putting the act of reading/writing the requirements into
source code increases the comfort of this – sometimes boring – activity.

- It also affects the designers and other people not involved directly in the
implementation phase, because it opens an effective channel of communi-
cation between – for instance – a system analyst and a coder; the analyst
writes a requirement directly in a compilation unit, the programmer reads
it and perform further steps to gain the required functionality.

- The presence of requirements in compilation units allows to interweave the 
them (their definitions formally speaking) with source code snippets being 
their direct implementations or implementation parts. This point is espe-
cially important because an act of locating requirements in pure (not in-
strumented with requirements or requirement-related tags) source code is 
a tedious and hard to solve problem. Further works on this can be found in
[13, 14]1.

- A compilation unit keeping some requirements may be tracked and ma-
naged by a source management and revision control system, such as Git
[19]. An immediate consequence is the ability to manage the requirements

                                                     
1 Very interesting works related to real-time systems programming, source-code verification

and requirements management in Ada programming language were presented in [15].



Prerequisites for Effective ...

27

versions, because a requirement change is a change in the compilation unit.
All version control system’s goodies, including the possible encryption
and the overall robustness of a distributed versioning system are there to
be used.

3 Summary

The key motivation behind this work was opening a way of finding ap-
proaches to managing the requirements appearing in such large software
projects as compilers for various programming languages. This paper may be
treated as an introduction to a full presentation of requirements management
solution in which the requirements and implementation information is placed 
directly in the source code. We concentrated on describing a context in which
the requirements management process takes place, trying to present the most
interesting existing solutions, indicating the problems and opening a discus-
sion on what ways to follow in the future scientific research.

The main motivation for the conceptual creation and implementation of an
innovative requirements management system is the urge to control the com-
plexity (especially the non-accidental one) of large software projects, such as 
the implementation of a static analyzer of a formally described programming
language or large modeling environments, such as the environments in which
some biological structures and behaviors could be modeled (e. g. human im-
mune system). The results of applying the requirements management system
in future will be presented in future papers.

References

1. Thomas M., 2003, The Modest Software Engineer, Proceedings ISADS 2003,
IEEE Press, pp. 169-174

2. Dardenne A., van Lamsweerde A., Fickas S., 1993, Goal-directed Requirements 
Acquisition, Science of Computer Programming, Vol. 20, pp. 3-50

3. Davis A. M., Leffingwell D. A., 1995, Using Requirements Management to De-
livery of Higher Quality Applications, Rational Software Corporation

4. Ebert Ch., 1997, Dealing with nonfunctional requirements in large software
systems, Annals of Software Engineering 3 (1997), pp. 367-395

5. Zave P., 1997, Classification of Research Efforts in Requirements Engineering,
ACM Computing Surveys, 29(4), pp. 315-321

6. Nuseibeh B., Easterbrook S., 2000, Requirements engineering: a roadmap,
ICSE ’00 Proceedings of the Conference on The Future of Software Engineer-
ing, pp. 35-46



Grzanek K.

28

7. Zave P., Jackson M., Four dark corners of requirements engineering,1997,
ACM Transactions on Software Engineering and Methodology (TOSEM) Vo-
lume 6 Issue 1, Jan. 1997, pp. 1-30

8. Hofmann H.F., Lehner F., 2001, Requirements Engineering as a Success Factor
in Software Projects, IEEE Software Jul/Aug 2001, pp. 58-66

9. Ghanavati S., Amyot D., Peyton L., 2007, A Requirements Management
Framework for Privacy Compliance, Proc. of the 10th Workshop on Require-
ments Engineering (WER’07), pp. 149-159

10. Merz F., Sinz C., Post H., Gorges T., Kropf T., 2010, Abstract Testing: Con-
necting Source Code Verification with Requirements, 2010 Seventh International
Conference on the Quality of Information and Communications Technology
(QUATIC), pp. 89-96

11. Yue T., Briand L.C., Labiche Y., 2011, A systematic review of transformation
approaches between user requirements and analysis models, Requirements En-
gineering Volume 16 Issue 2, June 2011, pp. 75-99

12. Santos Soares M., Vrancken J., Verbraeck A., 2011, User requirements model-
ing and analysis of software-intensive systems, The Journal of Systems and 
Software 84 (2011), pp. 328-339

13. Eisenbarth T., Koschke R., Simon D., 2003, Locating Features in Source Code,
IEEE Transactions on Software Engineering, pp. 210-224

14. Eaddy M., Aho A.V., Antoniol G., Gueheneuc Y.G., 2008, CERBERUS: Trac-
ing Requirements to Source Code Using Information Retrieval, Dynamic Analy-
sis, and Program Analysis, ICPC 2008. The 16th IEEE International Conference
on Program Comprehension, pp. 53-62

15. Ruiz J.F., Comar C., Moy Y., 2012, Source Code as the Key Artifact in Re-
quirement-Based Development: The Case of Ada 2012, Ada-Europe 2012,
Stockholm

16. Finkelstein A., Emmerich W., 2000, The future of requirements management
tools, In: Quirchmayr, G and Wagner, R and Wimmer, M, (eds.) Information
Systems in Public Administration and Law. Oesterreichische Computer Gesell-
schaft (Austrian Computer Society)

17. Hoffmann M., Kuhn N., Weber M., 2004, Requirements for requirements man-
agement tools, In Proceedings of the IEEE International Requirements Engineer-
ing Conference (RE’04), pp. 301-308

18. The Clojure Language Website, 2012, http://clojure.org
19. Git, Website 2012, http://git-scm.com/


