PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The effect of pellet technology on direct reduction of jarosite residues from zinc hydrometallurgy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the coal-based direct reduction technique has been applied to recover the valuable metals lead, zinc and ions from powdery and pellet jarosites. The influence of coal dosage of powdery and pellet jarosite separately on the volatilization rates of lead and zinc and on the metallization rate of iron was investigated. Results showed that the lead and zinc in both powdery and pellet jarosite could be effectively reduced with the volatilization rates higher than 95% and 99%, respectively. However, the iron reduction efficiency of pellet jarosite is better than that of powdery jarosite. The concentration of CO and CO2 gas produced in the reduction process of two types of jarosite were detected and compared to investigate the difference of reduction mechanism between powdery and pellet jarosite. The result showed that the utilization of both CO and C during the reduction of pellet jarosite was higher than that of powdery jarosite. The theoretical analysis was carried out by gas analysis and scanning electron microscopy and energy dispersive spectrometer (SEM-EDS).
Rocznik
Strony
802--811
Opis fizyczny
Bibliogr. 25 poz., rys. kolor.
Twórcy
autor
  • University of Science and Technology Beijing
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
  • Hanzhong Zinc Industry Co., Ltd
autor
  • Hanzhong Zinc Industry Co., Ltd
autor
  • Hanzhong Zinc Industry Co., Ltd
autor
  • Hanzhong Zinc Industry Co., Ltd
Bibliografia
  • ASOKAN, P., SAXENA, M., ASOLEKAR, S. 2010. Recycling hazardous jarosite waste using coal combustion residues. Materials Characterization. 61, 1342-1355.
  • ASOKAN, P., SAXENA, M., ASOLEKAR, S. R. 2006. Hazardous jarosite use in developing non-hazardous product for engineering application. Journal of Hazardous Materials. 137, 1589-1599.
  • CALLA-CHOQUE, D., NAVA-ALONSO, F., FUENTES-ACEITUNO, J. 2016. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system. Journal of Hazardous Materials. 317, 440-448.
  • CHEN, C., SUN, T., WANG, X., HU, T. 2017. Effects of MgO on the Reduction of Vanadium Titanomagnetite Concentrates with Char. JOM. 69, 1759-1766.
  • CHEN, Y., TANG, M., YANG, S., HE, J., TANG, C., YANG, J., LU, J. 2009. Novel technique of decomposition of ammonium jarosite bearing indium in NaOH medium. The Chinese Journal of Nonferrous Metals. 19, 1322-1331.
  • ERDEM, M., ÖZVERDI, A. 2011. Environmental risk assessment and stabilization/ solidification of zinc extraction residue: II. Stabilization/solidification. Hydrometallurgy. 105, 270-276.
  • GUO, D., HU, M., PU, C., XIAO, B., HU, Z., LIU, S., ZHU, X. 2015. Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas. international journal of hydrogen energy. 40, 4733-4740.
  • HU, H., DENG, Q., LI, C., XIE, Y., DONG, Z., ZHANG, W. 2014. The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay. Journal of Hazardous Materials. 271, 220-227.
  • JU, S., ZHANG, Y., ZHANG, Y., XUE, P., WANG, Y. 2011. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy. Journal of Hazardous Materials. 192, 554-558.
  • JUNG, S. M. 2014. Thermogravimetry and Reaction Gas Analysis of the Carbothermic Reduction of Titanomagnetite Ores with Char. ISIJ International, 54, 781-790.
  • JUNG, S. M. 2015. Effects of CaO/CaCO3 on the Carbothermic Reduction of Titanomagnetite Ores. Metallurgical & Materials Transactions B. 46, 1162-1174.
  • KASHIWAYA, Y., KANBE, M., ISHII, K. 2007. Reaction Behavior of Facing Pair Between Hematite and Graphite: A Coupling Phenomenon of Reduction and Gasification. ISIJ International. 41, 818-826.
  • KATSIOTI, M., TSAKIRIDIS, P., LEONARDOU-AGATZINI, S., OUSTADAKIS, P. 2006. Examination of the jarosite–alunite precipitate addition in the raw meal for the production of sulfoaluminate cement clinker. Journal of HazardousMaterials. 131, 187-194.
  • MALENGA, E. N., MULABA-BAFUBIANDI, A., NHETA, W. 2015. Alkaline leaching of nickel bearing ammonium jarosite precipitate using KOH, NaOH and NH4OH in the presence of EDTA and Na2S. Hydrometallurgy. 155, 69-78.
  • MEHRA, P., GUPTA, R. C., THOMAS, B. S. 2016A. Assessment of durability characteristics of cement concrete containing jarosite. Journal of Cleaner Production. 119, 59-65.
  • MHERA, P., GUPTA, R. C., THOMAS, B. S. 2016B. Properties of concrete containing jarosite as a partial substitute for fine aggregate. Journal of Cleaner Production. 120, 241-248.
  • MONTANARO, L., BIANCHINI, N., RINCON, J. M., ROMERO, M. 2001. Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy. Ceramics international. 27, 29-37.
  • MYMRIN, V. A., PONTE, H. A., IMPINNISI, P. 2005. Potential application of acid jarosite wastes as the main component of construction materials. Construction and building materials. 19, 141-146.
  • ÖZVERDI A., ERDEM, M. 2010. Environmental risk assessment and stabilization/ solidification of zinc extraction residue: I. Environmental risk assessment. Hydrometallurgy. 100, 103-109.
  • PAPPU, A., SAXENA, M., ASOLEKAR, S. R. 2006. Jarosite characteristics and its utilisation potentials. Science of the total environment. 359, 232-243.
  • SALINAS, E., ROCA, A., CRUELLS, M., PATINO, F., CORDOBA, D. 2001. Characterization and alkaline decomposition–cyanidation kinetics of industrial ammonium jarosite in NaOH media. Hydrometallurgy. 60, 237-246.
  • WANG, C., LI, K., YANG, H., LI, C. 2017. Probing Study on Separating Pb, Zn, and Fe from Lead Slag by Coal-based Direct Reduction. ISIJ International. 57, 996-1003.
  • WANG, Y., YANG, H., JIANG, B., SONG, R., ZHANG, W. 2018. Comprehensive recovery of lead, zinc, and iron from hazardous jarosite residues using direct reduction followed by magnetic separation. International Journal of Minerals, Metallurgy, and Materials. 25, 123-130.
  • YANG, H., JING, L., ZHANG, B. 2011. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation. Journal of Hazardous Materials. 185, 1405-1411.
  • YU, W., SUN, T., LIU, Z., KOU, J., XU, C. 2014. Effects of particle sizes of iron ore and coal on the strength and reduction of high phosphorus oolitic hematite-coal composite briquettes. ISIJ International. 54, 56-62.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00b56943-fef9-4444-a7bc-d2763161e448
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.