PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FPGA Implementation of Multi-scale Face Detection Using HOG Features and SVM Classifier

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an FPGA based embedded vision system for face detection is presented. The sliding detection window, HOG+SVM algorithm and multi-scale image processing were used and extensively described. The applied computation parallelizations allowed to obtain real-time processing of a 1280 × 720 @ 50Hz video stream. The presented module has been verified on the Zybo development board with Zynq SoC device from Xilinx. It can be used in a vast number of vision systems, including diver fatigue monitoring.
Słowa kluczowe
EN
face detection   HOG   SVM   FPGA  
Twórcy
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] Bailey, D.G. (2011). Design for Embedded Image Processing on FPGAs. Wiley
  • [2] Bryla, M. (2015). Smart camera for people recognition based on face image implemented on the heterogeneous Zynq platform. Master Thesis, AGH University of Science and Technology
  • [3] Dalal, N., Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 1, 886–893
  • [4] Das, S., Jariwala, A., Engineer, P. (2012). Modified architecture for real-time face detection using FPGA. In Engineering (NUiCONE), 2012 Nirma University International Conference on, pp. 1–5
  • [5] Gao, C., Lu, S-L. (2008). Novel FPGA based Haar classifier face detection algorithm acceleration. In Field Programmable Logic and Applications, 2008. FPL 2008. International Conference on, pp. 373–378
  • [6] Hu, K.T., Pai, Y.T., Ruan, S.J., Naroska, E. (2010). A hardware-efficient color segmentation algorithm for face detection. In Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on, pp. 688–691
  • [7] Huang, C., Vahid, F. (2011). Scalable object detection accelerators on FPGAs using custom design space exploration. In Application Specific Processors (SASP), 2011 IEEE 9th Symposium on, pp. 115–121
  • [8] Komorkiewicz, M., Kluczewski, M., Gorgon, M. (2012). Floating point HOG implementation for real-time multiple object detection. In 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 711–714
  • [9] Kotarba, D. (2016). Embedded vision system for human silhouette detection using HOG and SVM approach. Bachelor Thesis, AGH University of Science and Technology
  • [10] Kryjak, T., Gorgon, M., Komorkiewicz, M. (2016). An Efficient Hardware Architecture for Block Based Image Processing Algorithms, pages 54–65. Springer International Publishing, Cham
  • [11] Lai, H.C., Savvides, M., Chen, T. (2007). Proposed fpga hardware architecture for high frame rate face detection using feature cascade classifiers. In Biometrics: Theory, Applications, and Systems, 2007. BTAS 2007. First IEEE International Conference on, pp. 1–6
  • [12] Lee, Y., Ko, S.-B. (2006). FPGA implementation of a face detector using neural networks. In Electrical and Computer Engineering, 2006. CCECE ’06. Canadian Conference on, pp. 1914–1917
  • [13] Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G. (2015). A convolutional neural network cascade for face detection. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5325–5334
  • [14] Mustafah, Y.M., Azman, A.W. (2012). Skin region detector for real time face detection system. In Computer and Communication Engineering (ICCCE), 2012 International Conference on, pp. 653–658
  • [15] Nguyen, D.T., Ogunbona, P., Li, W. (2011). Human detection with contour-based local motion binary patterns. In Image Processing (ICIP), 2011 18th IEEE International Conference on, pp. 3609–3612
  • [16] Ojala, T., Pietikainen, M., Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7), 971–987
  • [17] Ojala, T., Pietikainen, M., Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59
  • [18] Suleiman, A., Sze, V. (2015). An energy-efficient hardware implementation of HOG-based object detection at 1080HD 60 fps with multi-scale support. Journal of Signal Processing Systems, pages 1–13
  • [19] Vapnik, V.N. (1995). The nature of statistical learning theory
  • [20] Viola, P., Jones, M. (2001). Robust real-time face detection. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 2, 747–747
  • [21] Wang, N.J., Chang, S.C., Chou, P.J. (2012). A real-time multi-face detection system implemented on FPGA. In Intelligent Signal Processing and Communications Systems (ISPACS), 2012 International Symposium on, pp. 333–337
  • [22] Xilinx. (2011). LogiCORE IP Cordic v4.0Z, www.xilinx.com
  • [23] Yang, H.C., Wang, X.A. (2015). Cascade face detection based on histograms of oriented gradients and support vector machine. In 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pages 766–770
  • [24] Zafeiriou, S., Zhang, C., Zhang, Z. (2015). A survey on face detection in the wild: Past, present and future. Computer Vision and Image Understanding, 138:1–24
  • [25] Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z. (2007). Face Detection Based on Multi-Block LBP Representation, pages 11–18. Springer Berlin Heidelberg, Berlin, Heidelberg
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00b5043f-b458-49f8-a3a8-7b287c810add
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.