PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptive and precise peak detection algorithm for fibre Bragg grating using generative adversarial network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An adaptive and precise peak wavelength detection algorithm for fibre Bragg grating using generative adversarial network is proposed. The algorithm consists of generative model and discriminative model. The generative model generates a synthetic signal and is sampled for training using a deep neural network. The discriminative model predicts the real fibre Bragg grating signal by the calculation of the loss functions. The maxima of loss function of the discriminative signal and the minima of loss function of the generative signal are matched and the desired peak wavelength of fibre Bragg grating is determined. The proposed algorithm is verified theoretically and experimentally for a single fibre Bragg grating peak. The accuracy has been obtained as ±0.2 pm. The proposed algorithm is adaptive in the sense that any random fibre Bragg grating peak can be identified within a short wavelength range.
Rocznik
Strony
art. no. e144227
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
  • Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
Bibliografia
  • [1] Chen, G. Y.& Brambilla, G. Optical Microfiber Physical Sensors. in Optical Fiber Sensors: Advanced Techniques and Applications (ed. Rajan, G.) chapter 8 (CRC Press, 2017).
  • [2] Fiber optic bio and chemical sensors. in Fiber optic sensors (eds. Yin, Sh., Ruffin, P. B. & Yu, F. T. S.) 435-457 (CRC Press, 2008).
  • [3] Ma, Z. & Chen, X. Fiber Bragg gratings sensors for aircraft wing shape measurement: Recent applications and technical analysis. Sensors 19, 55 (2018). https://doi.org/10.3390/s19010055
  • [4] Jinachandran, S. et al. Fabrication and characterization of a magnetized metal-encapsulated FBG sensor for structural health monitoring. IEEE Sensor J. 18, 8739–8746 (2018). https://doi.org/10.1109/JSEN.2018.2866803
  • [5] Gautam, A., Kumar, A. & Priya, V. Microseismic wave detection in coal mines using differential optical power measurement. Opt. Eng. 58 056111 (2019). https://doi.org/10.1117/1.OE.58.5.056111
  • [6] Kinjalk, K., Kumar, A. & Gautam, A. High-resolution FBG-based inclination sensor using eigen decomposition of reflection spectrum. IEEE Trans. Instrum. Meas. 69, 9124–9131 (2020). https://doi.org/10.1109/TIM.2020.2999116
  • [7] Vickers, N. J. Animal communication: when I’m calling you, will you answer too. Curr. Biol. 27, R713-R715 (2017). https://doi.org/10.1016/j.cub.2017.05.064
  • [8] An, Y., Wang, X., Qu, Zh., Liao, T. & Nan, Zh. Fiber Bragg grating temperature calibration based on BP neural network. Optik 172, 753-759 (2018). https://doi.org/10.1016/j.ijleo.2018.07.064
  • [9] Chen, Z.-J. et al. Optimization and comparison of the peak-detection algorithms for the reflection spectrum of fiber Bragg grating. Acta Photon. Sin. 44, 1112001 (2015). [in Chinese].
  • [10] Trita, A. et al. Simultaneous interrogation of multiple fiber Bragg grating sensors using an arrayed Waveguide grating filter fabricated in SOI platform. IEEE Photon. J. 7, 1-11 (2015). https://doi.org/10.1109/JPHOT.2015.2499546
  • [11] Junfeng, J. et al. Distortion-tolerated high speed FBG demodulation method using temporal response of high-gain photodetector. Opt. Fiber Technol. 45, 399-404 (2018). https://doi.org/10.1016/j.yofte.2018.08.019
  • [12] Kumar, S. et al. Efficient detection of multiple FBG wavelength peaks using matched filtering technique. Opt. Quantum Electron. 54, 1-14 (2022). https://doi.org/10.1007/s11082-021-03460-3
  • [13] Liu, F. et al. Multi-peak detection algorithm based on the Hilbert transform for optical FBG sensing. Opt. Fiber Technol. 45, 47-52 (2018). https://doi.org/10.1016/j.yofte.2018.06.003
  • [14] Theodosiou, A. et al. Accurate and fast demodulation algorithm formultipeak FBG reflection spectra using a combination of crosscorrelation and Hilbert transform. J. Light. Technol. 35, 3956-3962(2017). https://doi.org/10.1109/JLT.2017.2723945
  • [15] Chen, Y., Yang, K. & Liu, H.-L. Self-adaptive multi-peak detectionalgorithm for FBG sensing signal. IEEE Sensors J. 16 2658-2665 (2016). https://doi.org/10.1109/JSEN.2016.2516038
  • [16] Guo, Y., Yu, C., Yi, N. & Wu, H. Accurate demodulation algorithmfor multi-peak FBG sensor based on invariant moments retrieval.Opt. Fiber Technol. 54, 102129 (2020).https://doi.org/10.1016/j.yofte.2019.102129
  • [17] Li, Hong, et al. Recognition and classification of FBG reflectionspectrum under non-uniform field based on support vector machine.Opt. Fiber Technol. 60, 102371 (2020).https://doi.org/10.1016/j.yofte.2020.102371
  • [18] Nascimento, K. P., Frizera-Neto, A., Marques, C. & Leal-Junior,A. G. Machine learning techniques for liquid level estimation using FBG temperature sensor array. Opt. Fiber Technol. 65, 102612 (2021). https://doi.org/10.1016/j.yofte.2021.102612
  • [19] Jiang, H., Cheng, J. & Liu, T. Wavelength detection in spectrallyoverlapped FBG sensor network using extreme learning machine. IEEE Photon. Technol. Lett. 26, 2031-2034 (2014).https://doi.org/10.1109/LPT.2014.2345062
  • [20] Leal-Junior, A. G.A machine learning approach for simultaneousmeasurement of magnetic field position and intensity with fiber Bragg grating and magnetorheological fluid. Opt. Fiber Technol. 56, 102184 (2020). https://doi.org/10.1016/j.yofte.2020.102184
  • [21] Ee, Y.-J. et al. Lithium-ion battery state of charge (SoC) estimationwith non-electrical parameter using uniform fiber Bragg grating (FBG). J. Energy Storage 40, 102704 (2021). https://doi.org/10.1016/j.est.2021.102704
  • [22] Kokhanovskiy, A., Shabalov, N., Dostovalov, A. & Wolf, A. Highlydense FBG temperature sensor assisted with deep learning algorithms.Sensors 21, 6188 (2021). https://doi.org/10.3390/s21186188
  • [23] Cao, Z., Zhang, S., Liu, Z. & Li, Z. Spectral demodulation of fiberBragg grating sensor based on deep convolutional neural networks.J. Light Technol. 40, 4429-4435 (2022).https://doi.org/10.1109/JLT.2022.3155253
  • [24] Manie, Y. Ch. et al. Using a machine learning algorithm integratedwith data de-noising techniques to optimize the multipoint sensor network. Sensors 20, 1070, (2020). https://doi.org/10.3390/s20041070
Uwagi
In the manuscript “Adaptive and precise peak detection algorithm for fibre Bragg grating using generative adversarial network”, the authors have contributed as follows: S. K carried out the study of all the parameters which are used in the proposed peak detection technique, the design of peak detection algorithm, and the result analysis. Drafting and writing of the manuscript was carried out by S. S.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00b0b0e8-de34-4e19-832a-fb9ed3e3e5d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.