PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical model of a cylindrical linear module with permanent magnet based on approximation functions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The authors of the paper analyse and carry out simulation studies on a cylindrical linear “excitation coil – permanent magnet” module, which is an elementary component of many electromagnetic devices and linear permanent magnet (PM) electric motors. The geometric dimensions of the module and the winding data of the excitation coil correspond to the constructed prototype. The most important result of the work is demonstrating that it is possible to approximate the discrete function of the electromagnetic force acting on the runner, the flux linked with the excitation coil and the electromotive force of motion induced in the excitation coil using a modified Kloss function. The consequence of these approximations is conversion of the classical field-circuit model with Lookup Tables into a purely analytical model. Using this model, simulation studies of the oscillatory motion of the runner were carried out in the MATLAB Simulink environment, confirming the usefulness of the developed analytical model in the numerical analysis of dynamic states. The next part is dedicated to the experimental verification of the proposed analytical mathematical model. A laboratory setup with a high-speed camera was designed and built. A comparative analysis of the time curves obtained from measurement studies and simulation studies was conducted using the example of the damped oscillatory motion of the runner. The root mean square errors (RMSEs) were determined for various time intervals, relevant from the perspective of implementing the developed analytical mathematical model in control systems of different linear electromagnetic devices with permanent magnets.
Rocznik
Strony
291--309
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wz.
Twórcy
  • Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • [1] Barba P.D., Savini A., Wiak S., Field models in electricity and magnetism, Springer (2008), DOI: 10.1007/978-1-4020-6843-0.
  • [2] Bartel S., Kluszczyński K., Approximation of electromagnetic force axial distribution in “single excitation coil – PM runner” module based on modified Kloss function, Archives of Electrical Engineering (in print), no. 4 (2024).
  • [3] Bartel S., Electromagnetic pump with programmable performance characteristics with a permanent magnet synchronous linear motor, PhD thesis, Cracow University of Technology (in Polish, supervisor: professor Krzysztof Kluszczyński, PhD, DSc) (2024).
  • [4] Bartel S., Kluszczyński K., Approximation of the function of electrodynamic force acting in a piston electromagnetic pump, Przegląd Elektrotechniczny (in Polish), vol. 99, no. 1, pp. 179–184 (2023), DOI: 10.15199/48.2023.01.35.
  • [5] Bartel S., Kluszczyński K., The Problem of Choosing the Optimal Ratio: Height to Length of Excitation Coil in Linear Cylindrical PM Synchronous Motors, Progress in Applied Electrical Engineering (PAEE), Koscielisko, Poland, pp. 1–7 (2023), DOI: 10.1109/PAEE59932.2023.10244671.
  • [6] Bartel S., Kluszczyński K., The issue of selecting the geometric proportions of excitation coils in a linear cylindrical synchronous motor with a permanent magnet as a running gear, Przegl˛ad Elektrotechniczny, vol. 100, no. 2, pp. 55–61 (2024), DOI: 10.15199/48.2024.02.10.
  • [7] Bernat J., Kołota J., Stępień G., Szymański G., An inductance lookup table application for analysis of reluctance stepper motor model, Archives of Electrical Engineering, vol. 60, no. 1, pp. 15–21 (2011), DOI: 10.2478/v10171-011-0002-y.
  • [8] Boldea I., Linear Electric Machines, Drives, and MAGLEVs Handbook, 2nd edition, CRC Press (2023), DOI: 10.1201/9781003227670.
  • [9] Cui F., Sun Z., Shen S., Xu W., Du G., Design and Electromagnetic Characteristics Study of a High Speed and High Power Permanent Magnet Linear Synchronous Motor, 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, pp. 1986–1991 2020, DOI: 10.1109/IPEMC-ECCEAsia48364.2020.9367781.
  • [10] Gieras A., Gieras J.F., Recent Advancements in Permanent Magnet Motors Technology for Medical Applications, Proceedings of Electrotechnical Institute, iss. 229 (2006).
  • [11] Gieras J.F., Shen J.X., Modern permanent magnet electric machines: theory and control, CRC Press – Taylor and Francis Group (2023), DOI: 10.1201/9781003103073.
  • [12] Glinka T., Electric motors induced by permanent magnets, Przegląd Elektrotechniczny (in Polish), ISSN: 2449-9544, 0033-2097, pp. 1–7 (2008).
  • [13] Guo K., Guo Y., Optimization Design of Parallel Double Stator and Outer Mover Linear Rotary Permanent Magnet Machine Used for Drilling Robot, 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, pp. 1–2 (2020), DOI: 10.1109/ASEMD49065.2020.9276249.
  • [14] Kluszczyński K., Pilch Z., The Choice of the Optimal Number of Discs in an MR Clutch from the Viewpoint of Different Criteria and Constraints, Energies, vol. 14, iss. 21, 6888 (2021), DOI: 10.3390/en14216888.
  • [15] Komęza K., Pelikant A., Tegopoulos J., Wiak S., Comparative computation of forces and torques of electromagnetic devices by means of different formulae, IEEE Transactions on Magnetics, vol. 30, no. 5, pp. 3475–3478 (1994), DOI: 10.1109/20.312687.
  • [16] Kroczek R., Design methodology, design issues, modeling and testing of hybrid electromagnetic launcher, PhD thesis, Silesian University of Technology (in Polish, supervisor: professor Krzysztof Kluszczyński, PhD, DSc) (2009).
  • [17] Laithwaite E.R., Linear electric motors, Mills & Boon Limited (1971).
  • [18] Li P. et al., The Research on Thrust Fluctuation Suppression Strategy of Electromagnetic Halbach Coreless Linear Motor, 2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China, pp. 1–2 (2023), DOI: 10.1109/ASEMD59061.2023.10369429.
  • [19] Loic Q., Ohsaki H., Nonlinear abc-Model for Electrical Machines Using N-D Lookup tables, IEEE Transactions on Energy Conversion, vol. 30, iss. 1 (2015), DOI: 10.1109/TEC.2014.2358854.
  • [20] Pawlak A.M. Sensors and Actuators in Mechatronics: Design and Applications, CRC Press (2007), DOI: 10.1201/9781315221632.
  • [21] Pawluk K., Szczepański W., Electric linear motors, Wydawnictwa Naukowo-Techniczne (in Polish) (1974).
  • [22] Prekaniak P., Pochanke A., Bodnicki M., Computer simulation and experimental test of linear driver, Machine Dynamics Research, no. 4, pp. 71–78, ISSN: 2080-9948 (2010).
  • [23] Wiak S., Napieralska-Juszczak E., Computer field models of electromagnetic devices, IOS Press BV (2010).
  • [24] Zawilak S., Zawilak T., Medium power permanent magnet synchronous motors, Zeszyty problemowe – Maszyny Elektryczne 1, Wrocław University of Science and Technology, no. 100, pp. 5–8 (2013).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00ad7838-c6b6-4e3a-b1c2-05c10fce8ea7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.