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Light waves scattering from an anisotropic semi-soft
boundary medium with spectral dependence
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The far-zone behavior of polychromatic light waves on scattering from an anisotrophic semi-soft
boundary medium with spectral dependence was considered, and the spectral density and the spec-
tral degree of coherence of the far-zone scattered field were investigated. It is shown that the dis-
tributions of the spectral density and the spectral degree of coherence of scattered field are closely
related with the rms width, the center wavelength, and the maximum value of the center wavelength
of the scattering potential of the scattering medium.
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1. Introduction

Light waves scattering, which researches the relation between the behaviors of the scat-
tered field and the characteristics of the scattering media, is a considerable important
topic due to its potential applications in areas such as target detection, remote sensing,
medical diagnosis and so on. During the past few decades, numerous papers on light wave
scattering have been published, which focus on the influence of characteristics of var-
ious media on the behaviors of the scattered field [1-10]. Among all of the properties
of the scattered field, the spectral density and the spectral degree of coherence, which
can be used to determine the structural information of the unknown object [11-16], are
always two important factors which attracted much attentions. For instance, the spec-
tral density and the spectral degree of coherence of light wave on scattering from various
media, including random medium [17-20], deterministic medium [21], quasi-homoge-
neous medium [5-9], collection of particles [22-25], were discussed respectively. And
it is shown that the spectral density and spectral degree of coherence in the scattered
field are closely related to the characteristics of the scatterer (for a review on these
researches, please see [26]).

On the other hand, to simplify the discussion, almost all the scattering media are
assumed to be independent of the wavelength or frequency of the incident wave field.
However, in fact, the electric vector of light may give rise to polarization of the
scattering medium, and the polarization will bring about a change of the dielectric sus-
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ceptibility and the refractive index of the scattering medium [18, 27]. Therefore, some
previous papers have been published to discuss the issue of the properties of the
far-zone scattered field that involve the effects of the wavelength of the incident field
on the scattering media [18, 28]. However, as far as we know, almost all the publica-
tions on this issue are based on isotropic medium model with spectral dependence. In
this manuscript, we would like to extend the analysis from isotropic medium to the
anisotropic one. First of all, the expressions of the spectral density and the spectral de-
gree of coherence of light waves on scattering from anisotropic semi-soft boundary
medium with spectral dependence are derived. After that, some numerical results are
presented to show the influence of the characteristics of the scattering medium on the
far-zone behaviors.

2. Theory

We now consider a polychromatic light wave, with a propagation direction specified
by a unit vector s, which is incident upon a random medium (as shown in Fig. 1). Its
cross-spectral density function of incident field can be expressed as [29]

WO 1 0) = SO(@)exp|iks, - (15— 1)) (1)

where S )(w) represents the spectrum of incident wave, r{ and r) are a pair of point
vectors within the area of scattering medium, k£ = w/c is the wave number with ¢ being
the speed of light in vacuum. Now we assume that the spectrum of the incident field
has a form of [29]

S(i)(a)) = Bex M 2)
Pl7 o,

where both parameters B and [, are constant, and w,, denotes the central frequency of
the spectrum. And the cross-spectral density function of the scattered field can also be
expressed as [29]

So

Fig. 1. Illustration of the notations.
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W(S)(rsl, rsy; ) = S(i)(w)jjexp [iks0 - (ry— rl’)}CF(rl’, rh, o)
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x G*(|rs; —r}

3)

where Cp(r|, rj, o) is the correlation function of the scattering potential, and
G(|rs — r'|, w) is the Green’s function, which has an approximate form in the far field,
ie. [29],

Glrs —v'], ) ~ ZEUR)

exp(—iks-r") 4)

Upon substituting from Eq. (4) into Eq. (3), one can obtain the expression of the
cross-spectral density function of the far-zone scattered field, which can be expressed as

N
W(S)(rsl, rSy; @) = —(a))

[ k(s; - 8o). k(55— Sg), a)} (5)

where

CelK, Ky, 0] = [[Crlrf, v 0)exp[—i(K, - r{ + K, 1) [drid’ry  (6)
DD

is the six-dimensional spatial Fourier transform of the correlation function Cp(r|, rj, »)
of the scattering potential with K| =—k(s; —s,) and K, = k(s, — s¢).

In some previous papers, the behaviors of light waves on scattering from an isotropic
spectral-dependent medium were discussed [18, 28]. In this manuscript, we will gener-
alize this discussion to a more general scattering model, i.e., an anisotropic semi-soft
-boundary medium with spectra-dependence. Base on the spectral-codependent scat-
tering model and the description of anisotropic medium [28, 30], one can present the
correlation function of an anisotropic semi-soft-boundary medium with spectral de-
pendence, with the form of

(o rx)? iy’ ()
862(1) 80, (1) 8a2(1)

Cp(ry,rj, A) = exp|—

A Vo G b N N G S L 6 N G Rt O
Cy Z( ) o 2moi(A)  2moy(h)  2mél(A)
(7)

(- o
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1s a normalization factor and
M M!
(M) - 9)
m m! (M — m)!

is the binomial coefficient with M being a critical parameter that governs the boundary
property of the scattering medium. In addition,

(h=2g)
O-i(l) = O-Oiexp _—21 5 (i:x:yaz) (10)
i 2/10[
(i) ,
5,(4) = dy;exp|————— |,  (j=x,2) (11)
L 2/16 .

where the parameters 1, (4;), 4, (4;) and o, (J,) are the central wavelength, the rms
width, and the maximum value of the function at the central wavelength of the spectral
distribution of the effective width (effective correlation length) of the scattering me-
dium, respectively.

Similarly, with the help of the relationship between the wavelength and frequency,
i.e., A=2nc/w, Eq. (2) can be rewritten as

SO() = Bexp [ 2n°c” [i _ Lj] (12)

ry, (4 7

After that, we substitute from Eq. (7) into Eq. (6), then substitute the result into
Eq. (5), through a series of calculations, and then one can obtain the cross-spectral den-
sity function of the scattered field as follows:

()
W8, ray 0. 7) = 22 5 (M)
m—l
X 0.(2)6,(2)6.(1)8,(2)3,(1)8.(1) (13)

where

1 1
A = exp ——2—k2(S2x—slx)zaf(/l)}exp{—-z—kz(szy—sly)zof(l)}

_ . 5
X exp %kz(skslz)zazz(/l)} exp{%kz(slxzﬁs()x) m&f(l)}

Sy, s 2 + 2
< exp| (L ) méyz(l)} xp sz(m 50, méfw}

2 2
(14)
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If we let the two position vectors in the cross-spectral density function coincide,
i.e., 8; =s, = s the normalized spectral density of the scattered field can be obtained,
with the form of

s(’)(/l)

M
SOrs. sy ) = —Cl— z( D" 0 (1) 0, (4) 0.(0)8,(4)8,(4) 0.(4)

x exp{%kz(sxsox)zméf(l }exp{—k (s, — 5q,)’md (z)}

X exp{——k (s, —sOZ) mo (/1)}
(15)

In addition, the spectral degree of coherence of the far-zone scattered field also
plays an important role on the description of the characteristics of the scattered light
field, and the degree of coherence can be deduced from the cross-spectral density and
the spectral density of the scattered field, by the following definition [29]:

W(S)(rs], 7Sy, S, A)

JSOrsy, 5000 508, 50,2)

Upon substituting from Egs. (13) and (15) into Eq. (16), we can obtain the spectral
degree of coherence in the far-zone scattered field as follows:

1 (rsy, sy, s, 1) =

(16)

, 1 1
u(rs |, rsy, 80, 4) = exp [—Ekz(sh - slx)zaf(/l)} exp [—7/(2(% - sly)%j(/l)}

x exp[—%k%sgz—sl»zéu)}

17)
It is shown from the Eq. (15) and Eq. (17) that J; and o; have a great influence on
the normalized spectral density and the spectral degree of coherence, respectively.

3. Numerical results

In this section, we will present some numerical results to show the influence of the
structural parameters of the scattering medium on the distribution of the far-zone scat-
tered field. In Figs. 2—4, we will present the distributions of the normalized spectral
density with different parameters. Figure 2 presents the effect of the rms width of the
effective correlation length of the scattering medium on the distribution of the normal-
ized spectral density. As shown in Fig. 2a-2¢, when we decrease the value of 4;,/4;,
from 1/2 to 1/4, the angular width of x direction of the distribution of the scattered nor-
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Fig. 2. Illustration of the normalized spectral density of the far-zone scattered field by Eq. (15). The pa-
rameters for calculations are: M =2,1=6.328 x 107 m, A, = Aoy = Ay, =1.25x 106m, 4, =A4,,=

=2.25), 0, = 00, = G, = 304, A, = A5, = A5, = 0.25 % 10°0m, &), = 0y, = Jy. = 64, A, = A5, = 1.52,
(a)A(;x/Aéy 1:2, (b) A5,/45,= 1:3, and (¢) A,/ 45, = 1:4.
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Fig. 3. Illustration of the normalized spectral density of the far-zone scattered field by Eq. (15). The pa-
rameters for calculations are: M =2, 1 =6.328 x 10 m, 1 =gy = Agr = 125 % 10%m, 4, =4

s Lox oy

Ay =225, 0y, = 04, = 0. = 302, 8, = 5oy, = 0. = 62, A g = Ay, = A5 = 0450, 5, = 25.= 0.6 x 100 m
(a) A5,/ g, = 1:2, (b) A5, /A5, = 1:3, and () Z,/25,= 1:4

malized spectral density becomes larger. This phenomenon shows that the rms width
of the effective correlation length plays a significant role on the distribution of the nor-
malized spectral density of the far-zone scattered field.

Figure 3 shows the influence of the value of the center wavelength of the effective
correlation length of the scattering medium on the normalized spectral density in the
far-zone scattered field. It is shown that when the value of 45,/45, becomes smaller
and smaller, the angular width of x direction of the distribution of the normalized spec-
tral density will be larger. This phenomenon shows that the center wavelength of the
effective correlation length of the scattering medium also has a great effect on the dis-
tribution of the normalized spectral density of the far-zone scattered field.

In Fig. 4, we present the influence of the maximum value of the center wavelength
of the effective correlation length of the scattering medium on the distribution of the
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Fig. 4. Illustration of the normalized spectral density of the far-zone scattered field by Eq. (1 5). The pa—
rameters for calculations are: M =2, 1 =6.328 x 107" m, 1, = Aoy = Ag, = 1.25 % 106 =4,

A, =2.250, 60, = 0y, = 0o, = 302, Ay = Ay, = A5, = 0.452, AM zay 15,=025%100m, 50y 5o,
=127, (a) 89,/dg, = 1:2, (b) 8/, = 1:3, and (€) 8/, =

02 =

normalized spectral density in the far-zone scattered field. It is shown that as the value
of 9y, /dy, is getting smaller, the angular width of x direction of the distribution of the
scattered normalized spectral density of the far-zone scattered field will be larger. This
phenomenon shows that the maximum value of the center wavelength of the effective
correlation length is also an important element which affects the distribution of the nor-
malized spectral density of the far-zone scattered field.

In Figs. 57, we will present the distributions of the spectral degree of coherence
with different parameters. For the simplicity of the following discussion, we set one
variable in the spectral degree of coherence along the direction ofthe z-axis and change
the other variable, i.e., s; = (0, 0, 1) and s, = (s, 55, (1 - 53— szy)”z) In Fig. 5, we
present the influence of the rms width of the effective width on the distribution of the
spectral degree of coherence in the far-zone scattered field. We change the value of
rms width of the effective width along x direction and hold the values along y and z
directions. When we decrease the value of 4, /4, from 1/2 to 1/4, one can find that
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-0.02 0.25
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Fig. 5. Illustration of the spectral degree of coherence of the far-zone scattered field by Eq. (17). The pa-
rameters for calculations are as follows: 2 = 6.328 x 107" m, 2, =4,, =1, = 1.25 x 106 m, o, = 00y =

= 09. =304, Ay = A, =30 (a) A /A, = 1:2, (b) A,/ ,,= 1:3,and (¢) 4,,/4,,= 1:4.
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the angular width of x direction of the distribution of the degree of coherence becomes
larger and larger. It is shown that the rms width of the effective width can affect the
distribution of the degree of coherence.

In Fig. 6, the influence of the maximum value of the center wavelength of the ef-
fective width on the distribution of the spectral degree of coherence in the far-zone
scattered field is discussed. From Figs. 6a—6¢, one can find that the smaller is the value
of 6, /0y, the larger will be the angular width of the degree of coherence distribution
in x direction. It is shown that the maximum value of the center wavelength of effective
width also has a great influence on the distribution of the degree of coherence.

In Fig. 7, the influence of the center wavelength of the effective width on the dis-
tribution of the spectral degree of coherence in the far-zone scattered field is presented.
One can clearly see from Figs. 7a—7¢ that the anisotropic distribution of the spectral
degree of coherence becomes more obvious when we increase the value of 4,,/4,,
from 2 to 4. This phenomenon shows that the center wavelength of the effective width
also has a great impact on the distribution of the degree of coherence.
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Fig. 6. Illustration of the spectral degree of coherence of the far-zone scattered field by Eq. (17). The pa-
rameters for calculations are as follows: 1=6.328 x 107 m, 4, = Agy = A5z =2250, Aoy = Ay = A =

> oxX

=1.25%x10"%m, 0oy = 0. = 604. () 0y, /0y, = 1:2, (b) 0y, /0g, = 1:3, and (c) Ooy/00, = 1:4.
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Fig. 7. Illustration of the spectral degree of coherence of the far-zone scattered field by Eq. (17). The pa-

rameters for calculations are as follows: 1 = 6.328 x 107 m, A, = Agy =44, =225, 0y, = 0, = 0, =
=304, 4y, =4,.=0.65 x 107 m. (a) Aoxlhgy =211, (D) Agp/h s, =311, and (€) 44, /A,, = 4: 1.
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4. Conclusion

In summary, we discussed a scattering model of anisotropic semi-soft-boundary medium
with spectral dependence. It is shown that the rms width, the center wavelength, and
the maximum value of the center wavelength of the effective correlation length have
a significant effect on the distribution of the normalized spectral density. In addition,
the rms width, center wavelength, and maximum value of the center wavelength of the
effective width also have a great influence on the distribution of the spectral degree of
coherence of the far-zone scattered field. Owing to the discussion of this manuscript,
we have further understood the properties of the anisotropic semi-soft boundary me-
dium with spectral dependence, and these results may have potential application in the
weak scattered field.
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