PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of tunable multichannel filter in a one-dimensional photonic crystal incorporating uniaxial metamaterial at microwave frequency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We proposed to design a tunable multichannel optical filter composed of uniaxial indefinite metamaterial and dielectric photonic crystal categories arrangement, which can be employed as a valuable variation of peak transmission in microwave frequency. Because of the optical axis and polarization dependence of the uniaxial metamaterial layer, the position trend in the multichannel optical filter is shown to also rely on both TE and TM polarizations. The numerical results show that by changes of the incidence angle, width of photonic band gap (PBG) compacts (widens) at TE (TM) polarization and the PBG of the structure shifts towards the higher frequency region, for both polarizations. In addition, the multichannel optical filter properties and shift trend of the PBG are also affected by changing the optical axis of the uniaxial indefinite metamaterial. Thus, results shown that without appending defect layer in this structure, the sets of comb-like resonant peaks in transmission modes can be utilized in the lower or higher band edge of PBG at TE and TM polarizations.
Czasopismo
Rocznik
Strony
13--26
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Department of Physics, Ahar Branch, Islamic Azad University, Ahar, Iran
Bibliografia
  • [1] YABLONOVITCH E., Inhibited spontaneous emission of photons in solid-state physics and electronics, Physical Review Letters 58(20), 1987, pp. 2059–2061, DOI:10.1103/PhysRevLett.58.2059.
  • [2] JOHN S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, pp. 2486–2489, DOI: 10.1103/PhysRevLett.58.2486.
  • [3] HAITAO JIANG, HONG CHEN, HONGQIANG LI, YEWEN ZHANG, Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials, Applied Physics Letters 83(26), 2003, pp. 5386–5391, DOI: 10.1063/1.1637452.
  • [4] CHIGRIN D.N., LAVRINENKO A.V., YAROTSKY D.A., GAPONENKO S.V., Observation of total omnidirectional reflection from a one-dimensional dielectric lattice, Applied Physics A 68(1), 1999, pp. 25–28, DOI: 10.1007/s003390050849.
  • [5] GHRAATI A., ZARE Z., Modeling of thermal tunable multichannel filter using defective metallic photonic crystals, Optica Applicata 47(4), 2017, pp. 611–619, DOI: 10.5277/oa170410.
  • [6] JAMSHIDI-GHALEH K., KAZEMPOUR B., PHIROUZNIA A., Electrically tunable polarization splitting and conversion based on 1DPC structure with anisotropic defect layer, Superlattices and Microstructures 101, 2017, pp. 109–116, DOI: 10.1016/j.spmi.2016.11.041.
  • [7] PEINING LI, YOUWEN LIU, Multichannel filtering properties of photonic crystals consisting of single-negative materials, Physics Letters A 373(21), 2009, pp. 1870–1873, DOI: 10.1016/j.physleta. 2009.03.035.
  • [8] TAYA S.A., P-polarized surface waves in a slab waveguide with left-handed material for sensing applications, Journal of Magnetism and Magnetic Materials 377, 2015, pp. 281–285, DOI: 10.1016/j.jmmm.2014.10.126.
  • [9] AGHAJAMALI A., BARATI M., Effects of normal and oblique incidence on zero-n gap in periodic lossy multilayer containing double-negative materials, Physica B: Condensed Matter 407(8), 2012, pp. 1287–1291, DOI: 10.1016/j.physb.2012.01.125.
  • [10] JAMSHIDI-GHALEH K., KAZEMPOUR B., Effect of incident angle and polarization on electrically-tunabledefect mode in anisotropic photonic crystals, Applied Optics 55(16), 2016, pp. 4350–4356, DOI: 10.1364/AO.55.004350.
  • [11] TAYA S.A., Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide, Optik 126(14), 2015, pp. 1319–1323, DOI: 10.1016/j.ijleo.2015.04.013.
  • [12] TAYA S.A., SHAHEEN S.A., ALKANOO A.A., Photonic crystal as a refractometric sensor operated in reflection mode, Superlattices and Microstructures 101, 2017, pp. 299–305, DOI: 10.1016/j.spmi. 2016.11.057.
  • [13] TAYA S.A., Theoretical investigation of slab waveguide sensor using anisotropic metamaterial, Optica Applicata 45(3), 2015, pp. 405–417, DOI: 10.5277/oa150312.
  • [14] SMITH D.R., PADILLA W.J., VIER D.C., NEMAT-NASSER S.C., SCHULTZ S., Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters 84(18), 2000, pp. 4184–4187, DOI: 10.1103/PhysRevLett.84.4184.
  • [15] XIAOYONG HU, ZHENG LIU, QIHUANG GONG, Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials, Physics Letters A 372(3), 2008, pp. 333–339, DOI: 10.1016/j.physleta.2007.07.029.
  • [16] WANG Z.P., WANG C., ZHANG Z.H., Goos–Hänchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface, Optics Communications 281(11), 2008, pp. 3019–3024, DOI: 10.1016/j.optcom.2008.01.055.
  • [17] KAZEMPOUR B., JAMSHIDI-GHALEH K., SHABZENDEH M., Transmittance properties of tunable filter in a 1D photonic crystal doped by an anisotropic metamaterial, Superlattices and Microstructures 109, 2017, pp. 708–715, DOI: 10.1016/j.spmi.2017.05.062.
  • [18] YEH P., Optical Waves in Layered Media, Wiley, 1988.
  • [19] JACOB Z., ALEKSEYEV L., NARIMANOV E., Optical hyperlens: far-field imaging beyond the diffraction limit, Optics Express 14(18), 2006, pp. 8247–8256, DOI: 10.1364/OE.14.008247.
  • [20] YUANJIANG XIANG, XIAOYU DAI, SHUANGCHUN WEN, DIANYUAN FAN, Properties of omnidirectional gap and defect mode of one-dimensional photonic crystal containing indefinite metamaterial with hyperbolic dispersion, Journal of Applied Physics 102(9), 2007, article ID 093107, DOI: 10.1063/1.2809446.
  • [21] GUANGHAO ZHU, Designing a square invisibility cloak using metamaterials made of stacked positive-negative index slabs, Journal of Applied Physics 113(16), 2013, article ID 163103, DOI: 10.1063/1.4802446.
  • [22] ZI JING WONG, YUAN WANG, O’BRIEN K., JUNSUK RHO, XIAOBO YIN, SHUANG ZHANG, FANG N., TA-JEN YEN, XIANG ZHANG, Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak, Journal of Optics 19(8), 2017, article ID 084007, DOI: 10.1088/2040-8986/aa7a1f.
  • [23] FREEMAN D., MADDEN S., LUTHER-DAVIES B., Fabrication of planar photonic crystals in a chalcogenideglass using a focused ion beam, Optics Express 13(8), 2005, pp. 3079–3086, DOI: 10.1364/OPEX.13.003079.
  • [24] YUANJIANG XIANG, XIAOYU DAI, SHUANGCHUN WEN, Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials, Journal of the Optical Society of America B 24(9), 2007, pp. 2033–2039, DOI: 10.1364/JOSAB.24.002033.
  • [25] TAO PAN, GUO-DING XU, TAO-CHENG ZANG, LEI GAO, Study of a slab waveguide loaded with dispersive anisotropic metamaterials, Applied Physics A 95(2), 2009, pp. 367–372, DOI: 10.1007/s00339-008-5061-6.
  • [26] DEXIN YE, SHAN QIAO, JIANGTAO HUANGFU, LIXIN RAN, Experimental characterization of the dispersive behavior in a uniaxial metamaterial around plasma frequency, Optics Express 18(22), 2010, pp. 22631–22636, DOI: 10.1364/OE.18.022631.
  • [27] WEN-JIE CHEN, SHAO-JI JIANG, XIAO-DONG CHEN, BAOCHENG ZHU, LEI ZHOU, JIAN-WEN DONG, CHAN C.T., Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nature Communications 5, 2014, article ID 5782, DOI: 10.1038/ncomms6782.
  • [28] PURSIAINENA O.L.J., BAUMBERG J.J., Compact strain-sensitive flexible photonic crystals for sensors, Applied Physics Letters 87(10), 2005, pp. 101902–101904, DOI: 10.1063/1.2032590.
  • [29] TAO PAN, GUODING XU, TAOCHENG ZANG, LEI GAO, Goos–Hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium, Physica Status Solidi B 246(5), 2009, pp. 1088–1093, DOI: 10.1002/pssb.200844430.
  • [30] SHU W., REN Z., LUO H., LI F., Brewster angle for anisotropic materials from the extinction theorem, Applied Physics A 87(2), 2007, pp. 297–303, DOI: 10.1007/s00339-006-3832-5.
  • [31] SALEKI Z., ENTEZAR S. R., MADANI A., Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer, Applied Optics 56(2), 2017, pp. 317–323, DOI: 10.1364/AO.56.000317.
  • [32] CHUN-ZAO LI, SHAO-BIN LIU, XIANG-KUN KONG, BO-RUI BIAN, XUE-YONG ZHANG, Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice, Applied Optics 50(16), 2011, pp. 2370–2375, DOI: 10.1364/AO.50.002370.
  • [33] KUN-YUAN XU, XIGUANG ZHENG, CAI-LIAN LI, WEI-LONG SHE, Design of omnidirectional and multiple channelled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index, Physical Review E 71(6), 2005, article ID 066604, DOI: 10.1103/Phys-RevE.71.066604.
  • [34] WU C.-J. , LEE M.-H., JIAN J.-Z., Design and analysis of multichannel transmission filter based on the single-negative photonic crystal, Progress in Electromagnetics Research 136, 2013, pp. 561–578, DOI: 10.2528/PIER12122202.
  • [35] SCHURIG D., SMITH D.R., Spatial filtering using media with indefinite permittivity and permeability tensors, Applied Physics Letters 82(14), 2003, pp. 2215–2217, DOI: 10.1063/1.1562344.
  • [36] SMITH D.R. KROLL N., Negative refractive index in left-handed materials, Physical Review Letters 85(14), 2000, pp. 2933–2936, DOI: 10.1103/PhysRevLett.85.2933.
  • [37] JENSEN LI, LEI ZHOU, CHAN C.T., SHENG P., Photonic band gap from a Stack of positive and negative index materials, Physical Review Letters 90(8), 2003, article ID 083901, DOI: 10.1103/PhysRev-Lett.90.083901.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00a311ec-e04a-4861-aa66-ced462ff018a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.