PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of SiO2/Al2O3 Molar Ratio on Phase Composition and Surfaces Quality of Aluminum Silicate Sanitary Glazes in the SiO2-Al2O3-CaO-Na2O System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of research on aluminum silicate sanitary glazes in the SiO2-Al2O3-CaO-Na2O system with different SiO2/Al2O3 molar ratio. XRD, SEM-EDS and FITR measurement indicated that SiO2/Al2O3 molar ratio has a significant impact on the phase composition of the obtained glazes. Glass-ceramic glazes were obtained that consisted of both the glass phase and pseudowollastonite (Ca3[SiO3]3) or anorthite (Ca[Al2Si2O8]) crystals. Subsequently, the influence of phase composition on surface quality (roughness) was examined for the obtained samples. On the basis of the conducted examination of glaze surface roughness was observed that glazes of extreme SiO2/Al2O3 molar ratio are characterized with greatest surface roughness when compared to other glazes.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Silicate Chemistry and Macromolecular Compounds, Al. A. Mickiewicz 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Ceramics and Refractory Materials, Al. A. Mickiewicz 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Silicate Chemistry and Macromolecular Compounds, Al. A. Mickiewicz 30, 30-059 Kraków, Poland
Bibliografia
  • [1] J. Partyka, J. Lis, Ceram. Intern. 37, 1285-1292 (2011).
  • [2] V. I. Voevodin, Glass and Ceramics. 57, 250-251 (2000).
  • [3] J. Ma. Rincón, M. Romero, J. Marco, V. Caballer, Mate. Res. Bull. 33, 1159-1164 (1998).
  • [4] K. S. Kutateladze, G. G. Gaprindashvili, G. Z. Loladze, O. A. Gladushko, Glass and Ceramics 37, 357-358 (1980).
  • [5] O. S. Grum-Grzhimailo, K. K. Kvyatkovskaya, L. M. Savvateeva, Glass and Ceramics 35, 41-43 (1978).
  • [6] L. Fröberg, L. Hupa, M. Hupa, J. Eur. Ceram Soc. 29, 7-14 (2009).
  • [7] T. Kronberg, L. Hupa, K. Fröberg, Adv. Sci. Technol. 45, 590-595 (2006).
  • [8] L. Fröberg, Åbo Akademi, 2007 Åbo.
  • [9] P. Richet, B. O. Mysen, J. Ingrin, Phys. Chem. Miner. 25, 401-414 (1998).
  • [10] J. Jeffery, W. Heller, L. Preliminary, Acta Cryst. 6, 807-808 (1953).
  • [11] T. Yamanaka, H. Mori, Acta Cryst. B37, 1010-1017 (1981).
  • [12] J. F. Mejia, Understanding the role of fluxes in single-fire porcelain glaze development, 2004 Alfred University, New York.
  • [13] T. Kronberg, A. C. Ritschkoff, R. Mahlberg, J. Mannila, M. Kallio, A. Vesa, L. Hupa. J. Eur. Ceram Soc. 27, 1775–1780 (2007).
  • [14] W. B. White, Theory of corrosion of glass and ceramics: Corrosion of glass, ceramics and ceramic superconductors: principles, testing, characterization, and applications, 1992 Park Ridge: Noyes Publications, 2–28.
  • [15] http://rruff.info/pseudowollastonite/display=default/R070762
  • [16] http://rruff.info/anorthite/display=default/R040059.
  • [17] M. Sitarz, M. Handke, W. Mozgawa, E. Galuskin, I.O. Galuskina, J. Mol. Struct. 555, 357-362 (2000).
  • [18] M. Sitarz, J. Non-Cryst. Sol. 357, 1603-1608 (2011).
  • [19] W. Mozgawa, M. Sitarz, M. Rokita, J. Mol. Struct. 511,-512, 251-257 (1999).
  • [20] W. Mozgawa, M. Sitarz, J. Mol. Struct. 614, 273-279 (2002).
Uwagi
EN
This work was carried out thanks to support from NCBiR grant number PBS1/B5/17/2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00a2ca45-50a5-4beb-b66b-d24f5a521c40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.