Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Matematyczny model procesu suszenia cienkowarstwowego ignamu fioletowego za pomocą pompy ciepła z promieniowaniem podczerwonym
Języki publikacji
Abstrakty
This study focused on the thin-layer drying of yam by infrared-assisted heat pump drying to determine the thin-layer drying model, the effective moisture diffusivity, and the activation energy of moisture within the yam. The thin-layer drying experiment was conducted with input drying parameters such as drying temperatures of 40, 45, and 50°C, drying air velocity of 2.5 m·s-1, and infrared power of 250, 300, and 350 W. In order to determine a suitable thin-layer drying model for describing the yam drying process, six different thin-layer drying models (Lewis, Page, Modified Page, Henderson and Pabis, Wang and Singh, and Midilli) were chosen for nonlinear regression with the experimental drying data. The Midilli model was found to be the most suitable drying model for describing the thin-layer drying of yam. The average effective moisture diffusivity was in the range of 4.184×10-9 to 8.142×10-9 m2·s-1, and the activation energy was in the range of 16.78 to 21.01 kJ·mol-1 over the proposed range of drying input parameters.
Celem badania jest opracowanie modelu suszenia cienkowarstwowego ignamu fioletowego za pomocą pompy ciepła z promieniowaniem podczerwonym i określenie efektywnej dyfuzyjności wilgoci zawartej w fioletowym ignamie oraz energii jej aktywacji. Eksperyment suszenia cienkowarstwowego przeprowadzono przy następujących parametrach wejściowych: temperatury suszenia: 40, 45 i 50°C, prędkość powietrza suszącego: 2,5 m·s-1 a moc promieniowania podczerwonego: 250, 300 i 350 W. Aby określić taki model suszenia cienkowarstwowego, który opisywałby proces suszenia ignamu fioletowego przeprowadzono nieliniową regresję danych eksperymentalnych z wykorzystaniem sześciu różnych modeli suszenia cienkowarstwowego (Lewis, Page, zmodyfikowany Page, Henderson i Pabis, Wang i Singh oraz Midilli). Najbardziej odpowiednim modelem okazał się model Midilli. Średnia efektywna dyfuzyjność wilgoci w tym modelu mieściła się w zakresie od 4,184×10-9 do 8,142×10-9 m2·s-1, natomiast energia aktywacji wynosiła od 16,78 do 21,01 kJ·mol-1 w analizowanym zakresie parametrów suszenia.
Czasopismo
Rocznik
Tom
Strony
63--78
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Nong Lam University, Ho Chi Minh City, Vietnam
autor
- Faculty of Vehicle and Energy Engineering, University of Technology and Education Ho Chi Minh City, Vietnam
autor
- Faculty of Automotive Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
autor
- Faculty of Automotive Engineering, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
autor
- Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
Bibliografia
- Abbaspour, G.Y., Jahanbakhshi, A. & Kaveh, M. (2019a). Prediction kinetic, energy, and exergy of quince under hot air dryer using ANNs and ANFIS. Food Science and Nutrition, 8(1), 594-611.
- Abhishek, D., Ramakrishna, K. & Naveen, P. (2019). Experimental investigation and mathematical modeling of convective drying kinetics of white radish. Frontiers in Heat and Mass Transfer (FHMT), 13, pp. 21.
- Abhishek, D., Tarun, P., Ramakrishna, K. & Naveen, P. (2020). Convective hot air-drying kinetics of red beetroot in thin layers. Frontiers in Heat and Mass Transfer (FHMT), 14, pp. 23.
- Adebimpe, F.O., Charles, T.A. & Tunde, A.M. (2021). Modeling of Thin Layer Drying Characteristics of Blanch-Assisted Water Yam (Dioscorea Alata) Slices. Croatian Journal of Food Science and Technology, 13(1), 43-50.
- Adesola, A. & Satimehin, A. (2014). Mathematical Model for Deep Bed Drying of Gelatinized White Yam (Dioscorea rotundata, Poir). International Journal of Energy Engineering, 4(2A), 3pp. 3-39.
- Akoy, E.O. (2014). Experimental characterization and modeling of thin-layer drying of mango slices. International Food Research Journal, 21(5), 1911-1917. https://www.researchgate.net/publication/273061769.
- Alibas, I. (2014). Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. Journal of Food Science and Technology, 34(2), 394-401.
- Behera, G. & Sutar, P.P.A (2018). Comprehensive review of mathematical modeling of paddy parboiling and drying: Effects of modern techniques on process kinetics and rice quality. Trends in Food Science & Technology, 75, 206-230.
- Beigi, M. (2016). Hot air drying of apple slices: dehydration characteristics and quality assessment. Journal of Heat and Mass transfer, 52(8), 1435-1442.
- Bhattacharya, M., Srivastav, P.P. & Mishra, H.N. (2015). Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). Journal of Food Science Technology, 52(4), 2013-2022.
- Chineze, G., Okeke, B.E., Eje, P.C. & Eze, I. (2020). Drying Characteristics of Yam Varieties: A Comparative Analysis. Agricultural Engineering, 45(1), 20-37.
- Correia, A.F.K., Loro, A.C., Zanatta, S., Spoto, M.H.F. & Vieira, T.M.F.S. (2015). Effect of temperature, time and material thickness on the dehydration process of tomato. International Journal of Food Science, pp. 970724.
- Dan, H., Pei, Y., Xiaohong, T., Lei, L. & Bengt, S. (2021). Application of infrared radiation in the drying of food products. Trends in Food Science & Technology, 110, 765-777.
- Demiray, E. & Tulek, Y. (2012). Thin-layer drying of tomato (Lycopersicum esculentum Mill. cv. Rio Grande) slices in a convective hot air dryer. Journal of Heat and Mass transfer, 48(5), 841-847.
- Egbe, E.W. (2022). Effect of Temperature on Dehydration Kinetics of Pre-Treated and Untreated Yam (Dioscorea spp) Slices. Saudi Journal of Engineering and Technology, 7(1), 1-10.
- Fakhreddin, S. (2020). Recent Applications and Potential of Infrared Dryer Systems for Drying Various Agricultural Products: A Review. International Journal of Fruit Science, 20(3), 586-602.
- Fakhreddin, S. (2021). Recent applications of heat pump dryer for drying of fruit crops: A Review. International Journal of Fruit Science, 21, 546-555.
- Fasina, O., Tyler, B., Pickard, M., Zheng, G.H. & Wang, N. (2001). Effect of infrared heating on the properties of legume seeds. International Journal of Food Science and Technology, 36(1), 79-90.
- John, O.O., Clinton, E.O., Abiola J. A., Oladayo A., Abiola F. O., Nana E. G. & Adeniyi, T. O. (2020). Drying characteristics of yamslices (Dioscorear otundata) in a convective hotairdryer: application of ANFIS in the prediction of drying kinetics. Helyon, 6, pp. e03555.
- Kai, N.S., Ai Mei, L., Fan, Z., Kiran, T., Jian, G.Z., Ji, H.H. & Zhao, J.W. (2019). Microstructural, Textural, Sensory Properties and Quality of Wheat–Yam Composite Flour Noodles. Foods, 8(10), pp. 519.
- Kartik, S., Ramandeep, K., Satish, K., Ramesh, K.S., Surabhi, S., Subhash, V.P.& Vikas, K. (2023). Saponins: A concise review on food related aspects, applications and health implications. Food Chemistry Advances, 2, pp. 100191.
- Kaveh, M., Jahanbakhshi, A., Abbaspour G.Y., Taghinezhad, E. & Moghimi, M.B.F. (2018). The effect of ultrasound pre-treatment on quality, drying, and thermodynamic attributes of almond kernel under convective dryer using ANNs and ANFIS network. Journal of Food processing engineering, 41, 123-134.
- Keneni, Y.G., Hvoslef-Eide, A.K. & Marchetti, J.M. (2019). Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Industrial crops and products, 132, 12-20.
- Kien, P.V., Tan, N.T., Nghia, P.H., Tinh, V. N., Duc, L.A. & Hay, N. (2024). Heat and mass transfer in infrared assisted heat pump drying of purple yam. Agricultural Engineering, 28(1), 7 1-84.
- Koua, K., Fassinou, W., Gbaha, P. & Toure, S. (2009). Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy, 34, 1594-1602.
- Le, A.D., Hay, N. & Kien, P.V. (2022). Mathematical model of thin layer drying of ganoderma lucidum by radio frequency assisted heat pump drying. Frontiers in Heat and Mass Transfer (FHMT), 18(44), 1-7.
- Le, A.D., Kien, P.V., Tan, N.T., Son, D.T., Nhanh, V.N. & Ngoc, X. N. (2023). Heat and mass transfer in drying of carrot by radio frequency assisted heat pump drying. Frontiers in Heat and Mass Transfer (FHMT), 20, pp. 25.
- Linlin, L., Min, Z. & Bhesh, B. (2019). Influence of drying methods on some physicochemical, functional and pasting properties of Chinese yam flour. LWT - Food Science and Technology, 111, 182-189.
- Liu, Z., Bia, J., Wang, S., Meng, J., Wang, H., Yu, X., Gao, Z. & Xiao, H. (2019). Prediction of energy and exergy of mushroom slices drying in hot air impingement dryer by an artificial neural network. Drying Technology, 38(15), 1959-1970.
- Manuel, C., María, L.M.C., Luis, P.V., Lucía, H., Juan, F.G.M. & Sebastián, S. (2019). Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renewable Energy, 132, 911-920.
- Midilli, A. & Kucuk, H. (2003). Mathematical modelling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111-1122.
- Mostafa, K.Md., Rahmat, A.Md., Mohammad, Rezaul, I.S. & Shakti, C.M. (2020). Thin-layer drying kinetics of yam slices, physicochemical, and functional attributes of yam flour. Food Process Engineering, 2020, pp. e13448.
- Motevali, A., Saeid, M., Ahmad, B., Barat, G. & Hosain, D. (2016). Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. Journal of the Saudi Society of Agricultural Sciences, 15(2), 179-187.
- Nidhal, B.K. (2018). Effect of the variability of heat and mass transfer coefficients on 3D unsaturated porous medium drying. Frontiers in Heat and Mass Transfer (FHMT), 10, pp. 28, 1-7.
- Nurdi, S., John, S.M., Saka, S. & Yoshiharu, F. (2021). Variation in the Physical and Functional Properties of Yam (Dioscorea spp.) Flour Produced by Different Processing Techniques. Foods, 10(6), pp. 1341.
- Olatoye, K.K. & Arueya, G.L. (2019). Nutrient and phytochemical composition of flour made from selected cultivars of aerial yam (Dioscorea bulbifera) in Nigeria. Journal of Food Composition and Analysis, 79, 23-27.
- Omari, A., Behroozi K.N. & Sharifian, F. (2018). Drying kinetics and artificial neural network modeling of the mushroom drying process in a microwave-hot air dryer. Journal of Food Processing Engineering, 41(7), pp. e12849.
- Ononogbo, C. & Nwakuba, N.R., Nwaji, G.N., Nwufo, O.C., Nwosu, E.C., Okoronkwo, C.A., Igbokwe, J.O., Anyanwu, E.E. (2022). Thermal efficiency and drying Behaviour of Yam slices in a dryer driven by the waste heat of exhaust gases. Scientific African, 17, pp. (e01310) 1-11.
- Onwude, D.I., Hashim, N., Abdan, K., Janius, R. & Chen, G. (2019). The effectiveness of combined infrared and hot-air drying strategies for sweet potato. Journal of Food Engineering, 241, 75-87.
- Qu, F., Zhu, X., Ai, Z, Ai, Y., Qiu, F. & Ni, D. (2019). Effect of different drying methods on the sensory quality and chemical components of black tea. LWT - Food Science and Technology, 99, 112-118.
- Rastogi, N.K. (2012). Recent trends and developments in infrared heating in food processing, Critical Reviews in Food Science and Nutrition, 52, 737-760.
- Royen, M.J., Noori, A.W. & Haydary, J. (2020). Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices. Processes, 8, pp.1562.
- Salam, A., Aboud Ammar, B.A.A., Al-HiIphy, R. S., Lee, Y.C. & Francesco, C. (2019). A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules, 24(22), pp. 4125.
- Soner, S. & Fatih, A. (2020). Experimental investigation of drying kinetics of apple with hot air, microwave and ultrasonic power. Sadhana, 45, 94-104.
- Srikanth, K.S., Sharanagat, V.S., Kumar, Y., Bhadra, R., Singh, L., Nema, P.K. & Kumar, V. (2019). Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius). LWT - Food Science and Technology, 99, 8-16.
- Uwem, E.I., Innocent, O.O. & Benjamin, R.E. (2018). Kinetic Models for Drying Techniques-Food Materials. Advances in Chemical Engineering and Science, 8(2), 27-48.
- Waheed, M.A. & Komolafe C.A. (2019). Temperatures dependent drying kinetics of cocoa beans varieties in air-ventilated oven. Frontier in Heat and Mass Transfer (FHMT), 12, pp. 8.
- Wu, X.F., Zhang, M. & Bhandari, B. (2019). A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militarist. Innovative Food Science and Emerging Technologies, 54(4), 34-42.
- Zi, L.L., Long X., Magdalena, Z., Zhongli, P., Li Z.D., Jing, S.Z.L.G., Shan, Y.W., Zhi, A.Z. & Hong, W.X. (2022). Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD). Innovative Food Science and Emerging Technologies, 77, pp. 102948, 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00a141ed-3d39-4a84-8b3a-4a9bad069e23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.