PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wodór jako paliwo – zalety i wady

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Hydrogen as a fuel - advantages and disadvantages
Języki publikacji
PL
Abstrakty
PL
Wodór jest pierwiastkiem powszechnie występującym w przyrodzie, choć przede wszystkim w stanie związanym (woda, węglowodory – gaz ziemny, ropa naftowa, itp.). Wodór jako paliwo wydaje się być prawie idealny – praktycznie nie są emitowane zanieczyszczenia (w tym mikropyły), czy gazy cieplarniane. W artykule opisane zostały zalety paliwa wodorowe oraz warunki jego przechowywania i wykorzystania, zwłaszcza w aspekcie jego zastosowania w transporcie.
EN
Hydrogen is an element commonly found in nature, although mainly as its compounds like water, hydrocarbons − natural gas, crude oil, etc. Hydrogen as a fuel seems to be almost perfect − pollutants (including microdusts) or greenhouse gases are practically not emitted. It is problematic to build sealed hydrogen tanks or transmission installations, guaranteeing safe operation. Due to the physicochemical properties of hydrogen, it is a relatively small molecule which can easily penetrate the structure of metals or other materials from which the tanks or transmission installations are built. One solution is to use chemical tanks, i.e. substances that easily absorb hydrogen and desorb of H2 at an increased temperature. Despite the described problems, it seems that it is the fuel of the future, and intensive research on hydrogen fuel are carried out, among others in the USA, EU countries (especially Germany), Japan or China, etc.
Słowa kluczowe
PL
EN
Rocznik
Strony
16--28
Opis fizyczny
Bibliogr. 67 poz., rys., fot.
Twórcy
autor
  • Redakcja TTS
Bibliografia
  • 1. A wake-up call on green hydrogen: the amount of wind and solar needed is immense https://www.rechargenews.com/ transition/a-wake-up-call-on-green-hydrogen-the-amount-of-windand-solar-needed-is-immense/2-1-776481.
  • 2. Barnoush A. Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation, 2007.
  • 3. Basu S., Antia H. M. Helioseismology and Solar Abundances. Physics Reports 457 (5–6), 217, 2008.
  • 4. Bossel U. Does a Hydrogen Economy Make Sense?. Proceedings of the IEEE. 94 (10): 1826–1837, 2006.
  • 5. Carmo M., Fritz D., Mergel J., Stolten D. A comprehensive review on PEM water electrolysis. Journal of Hydrogen Energy 38 (12): 4901–4934, 2013.
  • 6. Cengel Y. A. Turner R. H. Fundamentals of thermal-fluid sciences, McGraw-Hill p. 78, 2004.
  • 7. Compressorless Hydrogen Transmission Pipelines Deliver Largescale Stranded Renewable Energy at Competitive Cost − 16th World Hydrogen Energy Conference, Lyon, 13–16 June 2006 http://www.leightyfoundation.org/wp-content/uploads/whec16lyon/WHEC16-Ref022.pdf
  • 8. del Valle F., Álvarez-Galván M.C., Consuelo M., Del Valle F., Villoria De La Mano J. A., Fierro, J. L. G.; et al. Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation. ChemSusChem. 2 (6): 471–485, 2009.
  • 9. del Valle F., Del Valle F., Villoria De La Mano, J. A.; Álvarez-Galván, M.C.; Fierro, J. L. G. et al. Photocatalytic water splitting under visible Light: concept and materials requirements. Advances in Chemical Engineering. 36: 111–143, 2009.
  • 10. Development of Solar-powered Thermochemical Production of Hydrogen from Water https://www.hydrogen.energy.gov/pdfs/review05/pd28_weimer.pdf.
  • 11. Djukic M. B. et al. Hydrogen damage of steels: A case study and hydrogen embrittlement model. Engineering Failure Analysis. Elsevier. 58 (Recent case studies in Engineering Failure Analysis): 485–498, 2015.
  • 12. Djukic M. B. et al. Hydrogen Embrittlement of Industrial Components: Prediction, Prevention, and Models. Corrosion. NACE International. 72 (7): 943–961, 2016.
  • 13. DOE Hydrogen Pipeline Working Group Workshop 2005 https:// www1.eere.energy.gov/hydrogenandfuelcells/pdfs/hpwgw_airprod_remp.pdf.
  • 14. Eberle U., Mueller B., von Helmolt R. Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy & Environmental Science 5 (10): 8780, 2012.
  • 15. Elboujdaini M. Hydrogen-Induced Cracking and Sulfide Stress Cracking. W: Uhlig’s Corrosion Handbook. R. Winston Revie (red.). Wiley 183–194, 2011.
  • 16. Elkins-Tanton L. T. Jupiter and Saturn. New York Chelsea House 2006.
  • 17. Fiber Fiber-Reinforced Polymer Pipelines 2007 https://www.hydrogen.energy.gov/pdfs/review07/pd_14_smith.pdf
  • 18. Florusse L. J., Peters C. J,, Schoonman J., Hester K. C., Koh C. A., Dec S. F., Marsh K. N., Sloan E. D. Stable Low-Pressure Hydrogen Clusters Stored in a Binary Clathrate Hydrate. Science 306 (5695): 469–71, 2004.
  • 19. FRP Hydrogen Pipelines https://www.hydrogen.energy.gov/pdfs/ progress06/iii_a_2_smith.pdf.
  • 20. Gangloff R. P. Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing 2012.
  • 21. Gillette J. L., Kolpa, R. L. Overview of interstate hydrogen pipeline systems. United States: N. p. 2008. https://www.osti.gov/biblio/924391.
  • 22. Graff M. Pojazdy Coradia iLint z ogniwami paliwowymi na wodór Technika Transportu Szynowego 3/2018.
  • 23. Grasemann M., Laurenczy G. Formic acid as a hydrogen source – recent developments and future trends. Energy & Environmental Science. 5 (8): 8171–8181, 2012.
  • 24. He T., Pei Q., Chen P. Liquid organic hydrogen carriers. Journal of Energy Chemistry. 24 (5): 587–594, 2015.
  • 25. Hemschemeier A., Melis A., Happe T. Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosyn. Res. 102 (2–3): 523–540, 2009.
  • 26. High Temperature Hydrogen Attack https://www.tuv.com/world/ en/high-temperature-hydrogen-attack.html.
  • 27. http://bactra.org/Daedalus.html.
  • 28. http://media.iupac.org/publications/pac/1970/pdf/2203x0555.pdf.
  • 29. http://www.level-network.com/wp-content/uploads/2017/02/ITM-Power.pdf.
  • 30. http://www.phys.ufl.edu/courses/phy4550-6555c/spring11/liquefaction-2011.pdf.
  • 31. http://www.uusiteknologia.fi/2015/12/01/suomi-viemaan-vedyn-tankkausasemia/.
  • 32. https://web.archive.org/web/20100714141058/http://www.hydrogenassociation.org/general/factSheet_history.pdf.
  • 33. https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office.
  • 34. https://www.europarl.europa.eu/document/activities/cont/201202/20120208ATT37544/20120208ATT37544EN.pdf
  • 35. https://www.fch.europa.eu/sites/default/files/Nov22_Session3_Panel%205_Slot%202_NOVEL-MEGASTACK_Thomassen%20%28ID%202891376%29.pdf.
  • 36. Hydrogen and Fuel Cell Technologies Office Accomplishments and Progress https://www.energy.gov/eere/fuelcells/hydrogenand-fuel-cell-technologies-office-accomplishments-and-progress
  • 37. Johnson W. H. On some remarkable change produced in iron and steel by the action of hydrogen and acids. Proceedings of the Royal Society of London 23, 168–179, 18, 1874.
  • 38. Kalamaras C. M., Efstathiou A. M. Hydrogen Production Technologies: Current State and Future Developments. Conference Papers in Energy 1–9, 2013.
  • 39. Kot R. Hydrogen Attack, Detection, Assessment and Evaluation https://www.ndt.net/apcndt2001/papers/1154/1154.htm.
  • 40. Kushner D. J., Baker A., Dunstall T. G. Pharmacological uses and perspectives of heavy water and deuterated compounds. Can. J. Physiol. Pharmacol. 2 (77), 79–88, 1999.
  • 41. Liquid Hydrogen Outline https://www.idealhy.eu/index.php?page=lh2_outline
  • 42. Müller B. Energiespeicherung mittels Methan und energietragenden Stoffen − ein thermodynamischer Vergleich Chemie Ingenieur Technik. 83 (11): 2002–2013, 2011.
  • 43. Namboodhiri T. K. G., Trans. Indian Inst. Metals, 37, 764, 1984.
  • 44. Nann T., Ibrahim S. K., Woi P.-M., Xu S., Ziegler J., Pickett C. J. Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production. Angewandte Chemie International Edition. 49 (9): 1574–1577, 2010.
  • 45. NanoLogix generates energy on-site with bioreactor-produced hydrogen. Solid State Technology. September 20, 2007.
  • 46. Natural gas pipelines for hydrogen transportation https:// www.cder.dz/A2H2/Medias/Download/Proc%20PDF/POSTERS/%5bGIV%5d%20Liquid%20&%20gaseous%20storage,%20delidevy,%20safety,%20RCS/222.pdf.
  • 47. Nelson G. A. in Hydrogen Damage, C. D. Beachem (Ed.), American Society for Metals, Metals Park, Ohio p. 377, 1977.
  • 48. New, composite polymeric/metallic materials and designs for hydrogen pipelines 2006 https://web.archive.org/web/20081008153102/http://www.hydrogendiscoveries.com/NHApipelinepaper.pdf.
  • 49. Ogden J. M. Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment 24: 227– 279, 1999.
  • 50. Opening Ceremony of Fukushima Hydrogen Energy Research Field (FH2R) Held with Prime Minister Abe and METI Minister Kajiyama. METI News Releases. Ministry of Economy, Trade and Industry. 9 March 2020.
  • 51. Panasonic moves closer to home energy self-sufficiency with fuel cells https://web.archive.org/web/20150807010324/http://ajw.asahi.com/article/sci_tech/technology/AJ201508020014.
  • 52. Pardee W. J., Paton N. E., Metall. Trans. 11A, 1391, 1980.
  • 53. Ahluwalia R. K., Hua T. Q., Peng J. K., Kumar R. System Level Analysis of Hydrogen Storage Options. DOE 2010 https://www.hydrogen.energy.gov/pdfs/review10/st001_ahluwalia_2010_o_web.pdf.
  • 54. Sadaghiani M. S. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy 42 (9): 6033–6050, 2017.
  • 55. Savvides N. Japan plans to use imported liquefied hydrogen to fuel Tokyo 2020 Olympics. Fairplay. IHS Markit Maritime Portal 2017-01-11.
  • 56. Sevilla M., Mokaya R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7 (4): 1250–1280, 2014.
  • 57. Stolten D. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology. John Wiley & Sons. p. 898, 2016.
  • 58. Stracke M. P., Ebeling G., Cataluña R., Dupont J. Hydrogen-Storage Materials Based on Imidazolium Ionic Liquids. Energy & Fuels. 21 (3): 1695–1698, 2007.
  • 59. Teichmann D., Arlt W., Wasserscheid P., Freymann R. A future energy supply based on Liquid Organic Hydrogen Carriers (LOHC). Energy & Environmental Science 4 (8): 2767–2773, 2011.
  • 60. The world´s largest-class hydrogen production, Fukushima Hydrogen Energy Research Field (FH2R) now is completed at Namie town in Fukushima https://www.toshiba-energy.com/en/info/ info2020_0307.htm
  • 61. Töpler J. Session 1.3: Introductory Lectures The Technological Steps of Hydrogen Introduction https://web.archive.org/ web/20081029214321/http://www.storhy.net/train-in/PDFTI/03_StorHy-Train-IN-Session-1_3_JToepler.pdf.
  • 62. Utgikar V. P., Thiesen T. Safety of compressed hydrogen fuel tanks: Leakage from stationary vehicles. Technology in Society. 27 (3): 315–320, 2005.
  • 63. Wicks G. G., Heung L. K., Schumacher R. F. SRNL’s porous, hollow glass balls open new opportunities for hydrogen storage, drug delivery and national defense American Ceramic Society Bulletin. 87 (6): 23, 2008.
  • 64. Zhevago N. K., Chabak A. F., Denisov E. I., Glebov V. I., Korobtsev S. V. Storage of cryo-compressed hydrogen in flexible glass capillaries. International Journal of Hydrogen Energy 38 (16): 6694–6703, 2013.
  • 65. Zhevago N. K., Denisov E. I., Glebov V. I. Experimental investigation of hydrogen storage in capillary arrays. International Journal of Hydrogen Energy 35: 169–175, 2010.
  • 66. Zhevago N. K., Glebov V. I. Hydrogen storage in capillary arrays. Energy Conversion and Management 48 (5): 1554–1559, 2007.
  • 67. Zhijie C. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368 (6488): 297– 303, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00a095e5-fd71-4dc6-873f-f78d2622ab11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.