PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Highly Efficient Milling on the Example of Selected Machining Strategies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pursuit to achieve a broadly defined optimisation of the manufacturing processes imposes the use of the increasingly innovative machining methods. The increase of the machining efficiency, assuring a high surface quality as well as precision of dimensions and shapes, necessitates the search for new methods to meet the demanding requirements, apart from the development of materials used for the working parts of tools, wear-resistant coatings or improvement of the cutting tool point geometry. One of the methods to improve forming by machining is the optimisation of the machining strategy during the manufacture of the components having complex shapes. The progress in this field is particularly noticeable along with development of the software for machining on multi-axis machines. This article presents the results of tests for the impact of machining strategy on passive force, cutting torque, material removal rate, topography of the obtained surface and the shape of chip resulting from the aluminium alloy milling. The tests were performed by comparison of the classic strategy available in the NXCAM system to the iMachining technology.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Kuczmaszewski, J., Zaleski, K., Matuszak, J., & Mądry, J. (2019). Testing Geometric Precision and Surface Roughness of Titanium Alloy Thin-Walled Elements Processed with Milling. In Advances in Manufacturing II (pp. 95-106). Springer, Cham.
  • 2. Michalik, P., Zajac, J., Hatala, M., Mital, D., & Fecova, V. (2014). Monitoring surface roughness of thin-walled components from steel C45 machining down and up milling. Measurement, 58, 416-428.
  • 3. Shan, C., Lv, X., & Duan, W. (2016). Effect of tool inclination angle on the elastic deformation of thin-walled parts in multi-axis ball-end milling. Procedia CIRP, 56, 311-315.
  • 4. Luo, M., Luo, H., Zhang, D., & Tang, K. (2018). Improving tool life in multi-axis milling of Ni-based superalloy with ball-end cutter based on the active cutting edge shift strategy. Journal of Materials Processing Technology, 252, 105-115.
  • 5. Kuczmaszewski, J., Zaleski, K., Matuszak, J., Pałka, T., & Mądry, J. (2017). Studies on the effect of mill microstructure upon tool life during slot milling of Ti6Al4V alloy parts. Eksploatacja i Niezawodność, Maintenance and Reliability, vol. 19, no. 4, 590–596.
  • 6. Gologlu, C., & Sakarya, N. (2008). The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method. Journal of materials processing technology, 206(1-3), 7-15.
  • 7. Toh, C. K. (2005). Design, evaluation and optimisation of cutter path strategies when high speed ma-chining hardened mould and die materials. Materials & design, 26(6), 517-533.
  • 8. Toh, C. K. (2006). Cutter path strategies in high speed rough milling of hardened steel. Materials & design, 27(2), 107-114.
  • 9. Álvarez, Á., Calleja, A., Ortega, N., & de Lacalle, L. (2018). Five-axis milling of large spiral bevel gears: toolpath definition, finishing, and shape errors. Metals, 8(5), 353.
  • 10. Baohai, W. U., Ming, L. U. O., ZHANG, D., & Feiyan, H. A. N. (2019). An automated approach to cal-culating the maximum diameters of multiple cutters and their paths for sectional milling of centrifugal impellers on a 4½-axis CNC machine. Chinese Journal of Aeronautics, 32(4), 1030-1039.
  • 11. Calleja, A., Alonso, M. A., Fernández, A., Tabernero, I., Ayesta, I., Lamikiz, A., & López de Lacalle, L. N. (2015). Flank milling model for tool path programming of turbine blisks and compressors. In-ternational Journal of Production Research, 53(11), 3354-3369.
  • 12. Zagórski, I., Kulisz, M., Kłonica, M., & Matuszak, J. (2019). Trochoidal Milling and Neural Networks Simulation of Magnesium Alloys. Materials, 12(13), 2070.
  • 13. Bawono, B., Anggoro, P. W., Bayuseno, A. P., Jamari, J., & Tauviqirrahman, M. (2019). Milling strategy optimized for orthotics insole to enhance surface roughness and machining time by Taguchi and response surface methodology. Journal of Industrial and Production Engineering, 36(4), 237-247.
  • 14. Wibowo, Y. T., Baskoro, S. Y., & Manurung, V. A. (2018, February). Toolpath Strategy and Optimum Combination of Machining Parameter during Pocket Mill Process of Plastic Mold Steels Material. In IOP Conference Series: Materials Science and Engineering (Vol. 306, No. 1, p. 012137). IOP Publishing.
  • 15. Etyemez, A. (2016). Optimization of Effects of Pocket Tool Path Strategies and Cutting
  • 16. Zaujec, R., Vopát, T., Šimna, V., & Pokorný, P. (2017). The influence of cam strategies on the tool wear and surface roughness. Annals of DAAAM & Proceedings, 28.
  • 17. Logins, A., & Torims, T. (2015). The influence of high-speed milling strategies on 3D surface roughness parameters. Procedia Engineering, 100, 1253-1261.
  • 18. Zagórski, I., & Korpysa, J. (2019). Surface Quality in Milling of AZ91D Magnesium Alloy. Advances in Science and Technology. Research Journal, 13(2), 119-129.
  • 19. Krolczyk, G., Legutko, S., & Gajek, M. (2013). Predicting the surface roughness in the dry machining of duplex stainless steel (DSS). Metalurgija, 52(2), 259-262.
  • 20. Fulemova, J., Hnatik, J., Kozmin, P., Sklenicka, J. Influence of cooling methods on tool life during machining with iMACHINING strategy (2015) Proceedings of the International Conference of DAAAM Baltic “Industrial Engineering”, 2015-January, pp. 15-20.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-009f3944-d950-4915-89a6-568cac096ffa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.