PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fundamentals and advances of wire arc additive manufacturing: materials, process parameters, potential applications, and future trends

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advancement of the wire arc additive manufacturing (WAAM) process has been significant due to the cost-effectiveness in producing large metal components with high deposition rates. With the growth in the understanding of WAAM, researchers have found that the microstructure and mechanical properties of the fabricated components are greatly improved. As a result, a diverse range of materials have been linked to the process, leading to a wider application of WAAM in various industries. Thus, this review paper provides a comprehensive analysis of the recent advancements in WAAM, a technology that combines arc welding with additive manufacturing. The focus is on the microstructure, mechanical properties, materials used, process-related defects, and post-process treatments. The paper aims to offer guidance on producing high-quality and defect-free components by aligning the material characteristics with the capabilities of various WAAM techniques. The results of the paper highlight the strengths and limitations of WAAM and provide insights into its future prospects. This information is valuable for academics, designers, and manufacturers in the field, serving as a milestone for future WAAM research and application.
Rocznik
Strony
art. no e96, 2023
Opis fizyczny
Bibliogr. 200 poz., rys., tab., wykr.
Twórcy
  • College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
  • Production Engineering Department, Alexandria University, Alexandria 21544, Egypt
autor
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
  • School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
autor
  • Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
  • College of Mechanics and Materials, Hohai University, West Focheng Road-8, Jiangning District, Nanjing 211100, China
autor
  • College of Mechanics and Materials, Hohai University, West Focheng Road-8, Jiangning District, Nanjing 211100, China
Bibliografia
  • 1. Yuan L, Pan Z, Polden J, Ding D, van Duin S, Li H. Integration of a multi-directional wire arc additive manufacturing system with an automated process planning algorithm. J Ind Inf Integr. 2022;26: 100265. https://doi.org/10.1016/j.jii.2021.100265.
  • 2. Kladovasilakis N, Charalampous P, Kostavelis I, Tzetzis D, Tzovaras D. Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: a comprehensive review. Prog Addit Manuf. 2021;6:349-65. https://doi.org/10.1007/s40964-021-00180-8.
  • 3. Chen W, Cao H, Zhu L. Heterogeneous microstructure and anisotropic mechanical properties of reduced activation ferritic/ martensitic steel fabricated by wire arc additive manufacturing. Nucl Mater Energy. 2022;33: 101261.
  • 4. Li JLZ, Alkahari MR, Rosli NAB, Hasan R, Sudin MN, Ramli FR. Review of wire arc additive manufacturing for 3D metal printing. Int J Autom Technol. 2019;13:346-53. https://doi.org/ 10.20965/ijat.2019.p0346.
  • 5. Cho HW, Shin SJ, Seo GJ, Kim DB, Lee DH. Real-time anomaly detection using convolutional neural network in wire arc additive manufacturing: molybdenum material. J Mater Process Technol. 2022;302: 117495. https://doi.org/10.1016/j.jmatprotec.2022.117495.
  • 6. Sadasivam P, Amirthalingam M. Design and fabrication of micro-plasma transferred wire arc additive manufacturing system. CIRP J Manuf Sci Technol. 2022;37:185-95.
  • 7. Müller J, Hensel J. WAAM of structural components-building strategies for varying wall thicknesses. Weld World. 2023. https://doi.org/10.1007/s40194-023-01481-y.
  • 8. Guo Y, Quan G, Jiang Y, Ren L, Fan L, Pan H. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding. J Magnes Alloy. 2021;9:192-201. https:// doi.org/10.1016/j.jma.2020.01.003.
  • 9. Wang X, Wang A. Finite element analysis of clamping form in wire and arc additive manufacturing. In: 2017 7th Int. Conf. Model. Simulation, Appl. Optim. ICMSAO 2017; 2017. p. 1-5. https://doi.org/10.1109/ICMSAO.2017.7934926.
  • 10. Sujan GK, Wu B, Pan Z, Li H. In-situ fabrication of titanium iron intermetallic compound by the wire arc additive manufacturing process. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:552-7. https://doi.org/10.1007/s11661-019-05555-9.
  • 11. Zhou Y, Lin X, Kang N, Wang Z, Tan H, Huang W. Hot deformation induced microstructural evolution in local-heterogeneous wire + arc additive manufactured 2219 Al alloy. J Alloys Compd. 2021;865: 158949. https://doi.org/10.1016/j.jallcom.2021.158949.
  • 12. Dutkiewicz J, Rogal Ł, Kalita D, Kawałko J, Węglowski MS, Kwieciński K, Śliwiński P, Danielewski H, Antoszewski B, Cesari E. Microstructure, mechanical properties, and martensitic transformation in NiTi shape memory alloy fabricated using electron beam additive manufacturing technique. J Mater Eng Perform. 2022;31:1609-21. https://doi.org/10.1007/s11665-021-06241-x.
  • 13. Ding D, Pan Z, Cuiuri D, Li H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81:465-81. https://doi.org/10.1007/s00170-015-7077-3.
  • 14. WOS. Results for wire and arc additive manufacturing (Topic) (2023). https://www.webofscience.com/wos/alldb/citationreport/074f6617-7ed9-4182-998d-586dc66c9e52-6ec406f8 (Accessed Feb 5, 2023).
  • 15. Bento JB, Lopez A, Pires I, Quintino L, Santos TG. Non-destructive testing for wire + arc additive manufacturing of aluminium parts. Addit Manuf. 2019;29: 100782. https://doi.org/10.1016/j. Addma.2019.100782.
  • 16. Derekar KS. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol (United Kingdom). 2018;34:895-916. https://doi. Org/10.1080/02670836.2018.1455012.
  • 17. Omiyale BO, Olugbade TO, Abioye TE, Farayibi PK. Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review. Mater Sci Technol. 2022;38:391-408. https://doi.org/10.1080/02670836.2022.20455 49.
  • 18. Cui X, Qi E, Sun Z, Jia C, Zeng Y, Wu S. Wire oscillating laser additive manufacturing of 2319 aluminum alloy: optimization of process parameters, microstructure, and mechanical properties. Chin J Mech Eng Addit Manuf Front. 2022;1:2022.
  • 19. Xu J, Zhu J, Fan J, Zhou Q, Peng Y, Guo S. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using electron beam free-form fabrication. Vacuum. 2019;167:364-73.
  • 20. Karunakaran KP, Bernard A, Suryakumar S, Dembinski L, Taillandier G. Rapid manufacturing of metallic objects. Rapid Prototyp J. 2012;18:264-80. https://doi.org/10.1108/1355254121 1231644.
  • 21. Hejripour F, Valentine DT, Aidun DK. Study of mass transport in cold wire deposition for wire arc additive manufacturing. Int J Heat Mass Transf. 2018;125:471-84. https://doi.org/10.1016/j. Ijheatmasstransfer.2018.04.092.
  • 22. Abe T, Mori D, Sonoya K, Nakamura M, Sasahara H. Control of the chemical composition distribution in deposited metal by wire and arc-based additive manufacturing. Precis Eng. 2019;55:231- 9. https://doi.org/10.1016/j.precisioneng.2018.09.010.
  • 23. Xue L, Xiao J, Nie Z, Hao F, Chen R, Liu C, Yu X, Tan C. Dynamic response of Ti-6.5Al-1Mo-1V-2Zr-0.1B alloy fabricated by wire arc additive manufacturing. Mater Sci Eng A. 2021;800: 140310. https://doi.org/10.1016/j.msea.2020.140310.
  • 24. Müller J, Hensel J, Dilger K. Mechanical properties of wire and arc additively manufactured high-strength steel structures. Weld World. 2022;66:395-407. https://doi.org/10.1007/s40194-021-01204-1.
  • 25. Xi N, Tang K, Fang X, Li Y, Duan Y, Huang K. Enhanced comprehensive properties of directed energy deposited Inconel 718 by a novel integrated deposition strategy. J Mater Sci Technol. 2023;141:42-55. https://doi.org/10.1016/j.jmst.2022.09.026.
  • 26. Huang J, Liu G, Yu X, Wu H, Huang Y, Yu S, Fan D. Microstructure regulation of titanium alloy functionally gradient materials fabricated by alternating current assisted wire arc additive manufacturing. Mater Des. 2022;218: 110731.
  • 27. Hauser T, Reisch RT, Breese PP, Lutz BS, Pantano M, Nalam Y, Bela K, Kamps T, Volpp J, Kaplan AFH. Porosity in wire arc additive manufacturing of aluminium alloys. Addit Manuf. 2021;41: 101993. https://doi.org/10.1016/j.addma.2021.101993.
  • 28. Panin A, Martynov S, Kazachenok M, Kazantseva L, Bakulin A, Kulkova S, Perevalova O, Sklyarova E. Effects of water cooling on the microstructure of electron beam additive-manufactured Ti-6Al-4V. Metals (Basel). 2021;11:1-15. https://doi.org/10.3390/met11111742.
  • 29. Baufeld B, Van der Biest O, Gault R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition: microstructure and mechanical properties. Mater Des. 2010;31:S106-11. https://doi.org/10.1016/j.matdes.2009.11.032.
  • 30. Wang J, Lin X, Li J, Hu Y, Zhou Y, Wang C, Li Q, Huang W. Effects of deposition strategies on macro/microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Mater Sci Eng A. 2019;754:735-49. https://doi.org/ 10.1016/j.msea.2019.03.001.
  • 31. Xiaolong C, Zulei L, Yanhua G, Zhonggang S, Yaoqi W, Lian Z. A study on the grain refinement mechanism of Ti-6Al-4V alloy produced by wire arc additive manufacturing using hydrogenation treatment processes. J Alloys Compd. 2022;890: 161634. https://doi.org/10.1016/j.jallcom.2021.161634.
  • 32. Panchenko O, Kurushkin D, Isupov F, Naumov A, Kladov I, Surenkova M. Gas metal arc welding modes in wire arc additive manufacturing of Ti-6Al-4V. Materials (Basel). 2021;14: 2457. https://doi.org/10.3390/ma14092457.
  • 33. An F, Zhang B, Yan Y, Wang L. Effect of vanadium contents on microstructure and mechanical properties of Ti-6Al-xV components produced by wire + arc additive manufacturing. Mater Trans. 2021;62:1071-8. https://doi.org/10.2320/matertrans.MTM2021031.
  • 34. Xian G, Mok Oh J, Lee J, Cho SM, Yeom J-T, Choi Y, Kang N. Effect of heat input on microstructure and mechanical property of wire-arc additive manufactured Ti-6Al-4V alloy. Weld World. 2022;66:847-61. https://doi.org/10.1007/s40194-021-01248-3.
  • 35. Liu K, Jiang X, Chen S, Yuan T, Yan Z. Effect of SiC addition on microstructure and properties of Al-Mg alloy fabricated by powder and wire cold metal transfer process. J Mater Res Technol. 2022;17:310-9. https://doi.org/10.1016/j.jmrt.2022.01.014.
  • 36. Langelandsvik G, Akselsen OM, Furu T, Roven HJ. Review of aluminum alloy development for wire arc additive manufacturing. Materials (Basel). 2021;14:1-26. https://doi.org/10.3390/ ma14185370.
  • 37. Su C, Chen X, Gao C, Wang Y. Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM. Appl Surf Sci. 2019;486:431-40. https://doi.org/10.1016/j.apsusc.2019.04.255.
  • 38. Geng H, Li J, Xiong J, Lin X, Zhang F. Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J Mater Eng Perform. 2017;26:621-9. https://doi.org/10.1007/s11665-016-2480-y.
  • 39. Ren L, Gu H, Wang W, Wang S, Li C, Wang Z, Zhai Y, Ma P. Effect of Mg content on microstructure and properties of Al-Mg alloy produced by the wire arc additive manufacturing method. Materials (Basel). 2019;12:1-12. https://doi.org/10.3390/ma122 4160.
  • 40. Hauser T, Reisch RT, Breese PP, Nalam Y, Joshi KS, Bela K, Kamps T, Volpp J, Kaplan AFH. Oxidation in wire arc additive manufacturing of aluminium alloys. Addit Manuf. 2021;41: 101958. https://doi.org/10.1016/j.addma.2021.101958.
  • 41. Fang X, Zhang L, Chen G, Dang X, Huang K, Wang L, Lu B. Correlations between microstructure characteristics and mechanical properties in 5183 aluminium alloy fabricated by wire-arc additive manufacturing with different arc modes. Materials (Basel). 2018;11: 2075. https://doi.org/10.3390/ma11112075.
  • 42. Dong B, Cai X, Lin S, Li X, Fan C, Yang C, Sun H. Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: microstructures and mechanical properties. Addit Manuf. 2020;36: 101447. https://doi.org/10.1016/j.addma.2020.101447.
  • 43. Dong B, Cai X, Xia Y, Lin S, Fan C, Chen F. Effects of interlayer temperature on the microstructures of wire arc additive manufactured Al-Zn-Mg-Cu alloy: insights into texture responses and dynamic precipitation behaviors. Addit Manuf. 2021;48: 102453. https://doi.org/10.1016/j.addma.2021.102453.
  • 44. Chen W, Chen Y, Zhang T, Wen T, Feng X, Yin L. Effects of location on the microstructure and mechanical properties of Cu-8Al-2Ni-2Fe-2Mn alloy produced through wire arc additive manufacturing. J Mater Eng Perform. 2020;29:4733-44. https:// doi.org/10.1007/s11665-020-04955-y.
  • 45. Wang Y, Chen X, Konovalov S, Su C, Siddiquee AN, Gangil N. In-situ wire-feed additive manufacturing of Cu-Al alloy by addition of silicon. Appl Surf Sci. 2019;487:1366-75. https:// doi.org/10.1016/j.apsusc.2019.05.068.
  • 46. Wang Y, Su C, Konovalov S. Microstructure and mechanical properties of Cu-6.5%Al alloy deposited by wire arc additive manufacturing. Metallogr Microstruct Anal. 2021;10:634-41. https://doi.org/10.1007/s13632-021-00781-3.
  • 47. Filippov AV, Khoroshko ES, Shamarin NN, Savchenko NL, Moskvichev EN, Utyaganova VR, Kolubaev EA, Smolin AY, Tarasov SY. Characterization of gradient CuAl-B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods. J Alloys Compd. 2021;859: 157824. https://doi.org/10.1016/j.jallcom. 2020.157824.
  • 48. Khoroshko ES, Filippov AV, Shamarin NN, Moskvichev EN, Utyaganova VR, Tarasov SY, Savchenko NL, Kolubaev EA, Rubtsov VE, Lychagin DV. Structure and mechanical properties of Cu-Al-Si-Mn system-based copper alloy obtained by additive manufacturing. Russ Phys J. 2021;64:333-9. https:// doi.org/10.1007/s11182-021-02333-2.
  • 49. Liu K, Chen X, Shen Q, Pan Z, Singh RA, Jayalakshmi S, Konovalov S. Microstructural evolution and mechanical properties of deep cryogenic treated Cu-Al-Si alloy fabricated by Cold Metal Transfer (CMT) process. Mater Charact. 2020;159: 110011. https://doi.org/10.1016/j.matchar.2019.110011.
  • 50. Laghi V, Palermo M, Tonelli L, Gasparini G, Girelli VA, Ceschini L, Trombetti T. Mechanical response of dot-by-dot wire-and-arc additively manufactured 304L stainless steel bars under tensile loading. Constr Build Mater. 2022;318: 125925. https://doi.org/10.1016/j.conbuildmat.2021.125925.
  • 51. Sun L, Jiang F, Huang R, Yuan D, Guo C, Wang J. Anisotropic mechanical properties and deformation behavior of low-carbon high-strength steel component fabricated by wire and arc additive manufacturing. Mater Sci Eng A. 2020;787: 139514. https://doi.org/10.1016/j.msea.2020.139514.
  • 52. Haden CV, Zeng G, Carter FM, Ruhl C, Krick BA, Harlow DG. Wire and arc additive manufactured steel: tensile and wear properties. Addit Manuf. 2017;16:115-23. https://doi.org/10. 1016/j.addma.2017.05.010.
  • 53. Huang C, Kyvelou P, Zhang R, Ben Britton T, Gardner L. Mechanical testing and microstructural analysis of wire arc additively manufactured steels. Mater Des. 2022;216: 110544. https://doi.org/10.1016/j.matdes.2022.110544.
  • 54. Chintala A, Tejaswi Kumar M, Sathishkumar M, Arivazhagan N, Manikandan M. Technology development for producing Inconel 625 in aerospace application using wire arc additive manufacturing process. J Mater Eng Perform. 2021;30:5333-41. https://doi.org/10.1007/s11665-021-05781-6.
  • 55. Xu F, Lv Y, Liu Y, Shu F, He P, Xu B. Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process. J Mater Sci Technol. 2013;29:480-8. https://doi.org/10.1016/j.jmst.2013.02.010.
  • 56. Shariftabar M, Khorshahian S, ShafeeAfarani M, Kumar P, Jain NK. High-temperature oxidation performance of Inconel 625 superalloy fabricated by wire arc additive manufacturing. Corros Sci. 2022;197: 110087. https://doi.org/10.1016/j.corsci. 2022.110087.
  • 57. Yu X, Wang S, Zheng D, Shen X, Li Y, Liu W, Su Y, Liu F. Effect of heat treatment on rotating bending fatigue properties of K417G nickel-base superalloy. J Alloys Compd. 2022;905: 164209. https://doi.org/10.1016/j.jallcom.2022.164209.
  • 58. Kaushik V, Kumar BN, Sakthi Kumar S, Vignesh M. Magnesium role in additive manufacturing of biomedical implants- challenges and opportunities. Addit Manuf. 2022;55: 102802. https://doi.org/10.1016/j.addma.2022.102802.
  • 59. Martinez Holguin DA, Han S, Kim NP. Magnesium alloy 3D printing by wire and arc additive manufacturing (WAAM). MRS Adv. 2018;3:2959-64. https://doi.org/10.1557/adv.2018.553.
  • 60. Wang Q, Wu G, Tong X. An investigation into wire arc additive manufacturing of Mg-Y-RE-Zr alloy. Mater Lett. 2022;326: 132922. https://doi.org/10.1016/j.matlet.2022.132922.
  • 61. Guo Y, Quan G, Celikin M, Ren L, Zhan Y, Fan L, Pan H. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing. J Magnes Alloy. 2022;10:1930-40. https://doi.org/10.1016/j.jma.2021.04.006.
  • 62. Nagamatsu H, Sasahara H. Improvement of cooling effect and dimensional accuracy of wire and arc additive manufactured magnesium alloy by active-cooling-based contacting copper blocks. J Manuf Mater Process. 2022;6:27. https://doi.org/10. 3390/jmmp6020027.
  • 63. Guo J, Zhou Y, Liu C, Wu Q, Chen X, Lu J. Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency. Materials (Basel). 2016;9:823. https:// doi.org/10.3390/ma9100823.
  • 64. Gneiger S, Österreicher JA, Arnoldt AR, Birgmann A, Fehlbier M. Development of a high strength magnesium alloy for wire arc additive manufacturing. Metals (Basel). 2020;10:1-14. https:// doi.org/10.3390/met10060778.
  • 65. Long J, Wang Z, Yin F, Zhao Y, Li J, Zhang T, Gang W. Microstructure and mechanical property improvement of AZ31B induced by the combination of cold metal transfer welding and friction stir processing. J Mater Eng Perform. 2022;31:3354-61. https://doi.org/10.1007/s11665-021-06429-1.
  • 66. Yang X, Liu J, Wang Z, Lin X, Liu F, Huang W, Liang E. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process. Mater Sci Eng A. 2020;774: 138942. https://doi.org/10. 1016/j.msea.2020.138942.
  • 67. Pixner F, Buzolin R, Warchomicka F, Pilz A, Enzinger N. Wire-based electron beam additive manufacturing of tungsten. Int J Refract Met Hard Mater. 2022;108: 105917. https://doi.org/10. 1016/j.ijrmhm.2022.105917.
  • 68. Marinelli G, Martina F, Ganguly S, Williams S. Development of Wire + Arc additive manufacture for the production of large-scale unalloyed tungsten components. Int J Refract Met Hard Mater. 2019;82:329-35. https://doi.org/10.1016/j.ijrmhm. 2019.05.009.
  • 69. Marinelli G, Martina F, Ganguly S, Williams S, Lewtas H, Hancock D, Mehraban S, Lavery N. Microstructure and thermal properties of unalloyed tungsten deposited by Wire + Arc Additive Manufacture. J Nucl Mater. 2019;522:45-53. https://doi.org/ 10.1016/j.jnucmat.2019.04.049.
  • 70. Marinelli G, Martina F, Ganguly S, Williams S. Microstructure, hardness and mechanical properties of two different unalloyed tantalum wires deposited via wire + arc additive manufacture. Int J Refract Met Hard Mater. 2019;83:270-6. https://doi.org/10.1016/j.ijrmhm.2019.104974.
  • 71. Marinelli G, Martina F, Ganguly S, Williams S. Grain refinement in an unalloyed tantalum structure by combining Wire+Arc additive manufacturing and vertical cold rolling. Addit Manuf. 2020;32: 101009. https://doi.org/10.1016/j.addma.2019.101009.
  • 72. Marinelli G, Martina F, Lewtas H, Hancock D, Ganguly S, Williams S, Marinelli G, Martina F, Lewtas H, Hancock D. Functionally graded structures of refractory metals by wire arc additive manufacturing. Sci Technol Weld Join. 2019. https://doi.org/10.1080/13621718.2019.1586162.
  • 73. Malakizadi A, Mallipeddi D, Dadbakhsh S, M’Saoubi R, Krajnik P. Post-processing of additively manufactured metallic alloys-a review. Int J Mach Tools Manuf. 2022;179:3795-814. https://doi.org/10.1016/j.ijmachtools.2022.103908.
  • 74. Ahsan MRU, Seo G-J, Fan X, Liaw PK, Motaman S, Haase C, Kim DB. Effects of process parameters on bead shape, microstructure, and mechanical properties in wire + arc additive manufacturing of Al0.1CoCrFeNi high-entropy alloy. J Manuf Process. 2021;68:1314-27. https://doi.org/10.1016/j.jmapro. 2021.06.047.
  • 75. Shen Q, Kong X, Chen X. Fabrication of bulk Al-Co-Cr-Fe- Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): microstructure and mechanical properties. J Mater Sci Technol. 2021;74:136-42. https://doi. org/10.1016/j.jmst.2020.10.037.
  • 76. Liu J, Li J, Du X, Tong Y, Wang R, He D, Cai Z, Wang H. Microstructure and mechanical properties of wire arc additively manufactured MoNbTaWTi high entropy alloys. Materials (Basel). 2021;14:1-12. https://doi.org/10.3390/ma14164512.
  • 77. Osintsev K, Konovalov S, Zaguliaev D, Ivanov Y, Gromov V, Panchenko I. Investigation of Co-Cr-Fe-Mn-Ni non-equiatomic high-entropy alloy fabricated by wire arc additive manufacturing. Metals (Basel). 2022;12:197. https://doi.org/10.3390/met12 020197.
  • 78. Alonso U, Veiga F, Suárez A, Artaza T. Experimental investigation of the influence of wire arc additive manufacturing on the machinability of titanium parts. Metals (Basel). 2020;10:24. https://doi.org/10.3390/met10010024.
  • 79. Ye H, Ye K, Gao Guo B, Bing Le F, Wei C, Sun X, Yong Wang G, Liu Y. Effects of combining ultrasonic micro-forging treatment with laser metal wire deposition on microstructural and mechanical properties in Ti-6Al-4V alloy. Mater Charact. 2020;162: 110187. https://doi.org/10.1016/j.matchar.2020. 110187.
  • 80. De Li C, Gu HM, Wang W, Wang S, Ren LL, Zhai YC, Wang ZB, Ming Z. Microstructure and properties of Al-7Si-0.6Mg alloys with different Ti contents deposited by wire arc additive manufacturing. Rare Met. 2021;40:2530-7. https://doi.org/10. 1007/s12598-020-01603-1.
  • 81. Wang Y, Konovalov S, Chen X, Ivanov Y, Jayalakshmi S, Singh RA. Research on Cu-6.6%Al-3.2%Si alloy by dual wire arc additive manufacturing. J Mater Eng Perform. 2021;30:1694-702. https://doi.org/10.1007/s11665-021-05470-4.
  • 82. Ghafari M, Vahedi Nemani A, Nasiri A. Microstructure and mechanical behavior of PH 13-8Mo martensitic stainless steel fabricated by wire arc additive manufacturing. Addit Manuf. 2022;49: 102374. https://doi.org/10.1016/j.addma.2021.102374.
  • 83. Li Y, Yuan Y, Wang D, Fu S, Song D, Vedani M, Chen X. Low cycle fatigue behavior of wire arc additive manufactured and solution annealed 308 L stainless steel. Addit Manuf. 2022;52: 102688. https://doi.org/10.1016/j.addma.2022.102688.
  • 84. Mookara RK, Seman S, Jayaganthan R, Amirthalingam M. Infuence of droplet transfer behaviour on the microstructure, mechanical properties and corrosion resistance of wire arc additively manufactured Inconel (IN) 625 components. Weld World. 2021;65:573-88. https://doi.org/10.1007/s40194-020-01043-6.
  • 85. Mohan Kumar S, Rajesh Kannan A, Pravin Kumar N, Pramod R, Siva Shanmugam N, Vishnu AS, Channabasavanna SG. Microstructural features and mechanical integrity of wire arc additive manufactured SS321/Inconel 625 functionally gradient material. J Mater Eng Perform. 2021;30:5692-703. https://doi.org/ 10.1007/s11665-021-05617-3.
  • 86. Zavdoveev A, Pozniakov V, Baudin T, Seop H, Ilya K, Gajvoronskiy A, Skoryk M. Optimization of the pulsed arc welding parameters for wire arc additive manufacturing in austenitic steel applications. Int J Adv Manuf Technol. 2022;119:5175-93.
  • 87. Li J, Qiu Y, Yang J, Sheng Y, Yi Y, Zeng X, Chen L, Yin F, Su J, Zhang T, Tong X, Guo B. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution. J Magnes Alloy. 2021. https://doi.org/10.1016/j.jma.2021.04.007.
  • 88. Cunningham CR, Flynn JM, Shokrani A, Dhokia V, Newman ST. Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf. 2018;22:672-86. https://doi.org/10.1016/j.addma.2018.06.020.
  • 89. Kumar Sinha A, Pramanik S, Yagati KP. Research progress in arc based additive manufacturing of aluminium alloys-a review. Meas J Int Meas Confed. 2022;200: 111672. https://doi.org/10. 1016/j.measurement.2022.111672.
  • 90. Wang J, Pan Z, Wang Y, Wang L, Su L, Cuiuri D, Zhao Y, Li H. Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Nirich NiTi alloy. Addit Manuf. 2020;34: 101240. https://doi.org/ 10.1016/j.addma.2020.101240.
  • 91. Ke WC, Oliveira JP, Cong BQ, Ao SS, Qi ZW, Peng B, Zeng Z. Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys. Addit Manuf. 2022;50: 102513. https://doi.org/10.1016/j. Addma.2021.102513.
  • 92. Cong B, Cai X, Qi Z, Qi B, Zhang Y, Zhang R, Guo W, Zhou Z, Yin Y, Bu X. The effects of ultrasonic frequency pulsed arc on wire + arc additively manufactured high strength aluminum alloys. Addit Manuf. 2022;51: 102617. https://doi.org/10.1016/j. Addma.2022.102617.
  • 93. Waszink JH, Graat HJ. Experimental investigation of the forces acting on a drop of weld metal. Weld J. 1983;62:108-16.
  • 94. Wu B, Ding D, Pan Z, Cuiuri D, Li H, Han J, Fei Z. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. J Mater Process Technol. 2017;250:304-12. https://doi.org/10. 1016/j.jmatprotec.2017.07.037.
  • 95. Jiang X, Di X, Li C, Wang D, Hu W. Improvement of mechanical properties and corrosion resistance for wire arc additive manufactured nickel alloy 690 by adding TiC particles. J Alloys Compd. 2022;928: 167198. https://doi.org/10.1016/j.jallcom.2005.05.002.
  • 96. Corradi DR, Bracarense AQ, Wu B, Cuiuri D, Pan Z, Li H. Effect of Magnetic Arc Oscillation on the geometry of single-pass multi-layer walls and the process stability in wire and arc additive manufacturing. J Mater Process Technol. 2020;283: 116723. https://doi.org/10.1016/j.jmatprotec.2020.116723.
  • 97. Huan P, Wei X, Wang X, Di H, Chen Y, Zhang Q, Chen X, Shen X. Comparative study on the microstructure, mechanical properties and fracture mechanism of wire arc additive manufactured Inconel 718 alloy under the assistance of alternating magnetic field. Mater Sci Eng A. 2022;854: 143845. https://doi.org/10.1016/j.msea.2022.143845.
  • 98. Zheng Y, Cao L, Wang J, Xie J, Chen J, Wang D, Wang S, Xu J, Lu H. Surface morphology refinement and Laves phase control of plasma arc additively manufactured Inconel 718 via an alternating magnetic feld. Mater Des. 2022;223: 111161. https://doi. org/10.1016/j.matdes.2022.111161.
  • 99. Qiu Z, Dong B, Wu B, Wang Z, Carpenter K, Wu T, Zhang J, Wexler D, Zhu H, Li H. Tailoring the surface fnish, dendritic microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy by magnetic arc oscillation. Addit Manuf. 2021;48: 102397. https://doi.org/10.1016/j.addma. 2021.102397.
  • 100. Wang X, Wang A, Li Y. Study on the deposition accuracy of omni-directional GTAW-based additive manufacturing. J Mater Process Technol. 2020;282: 116649. https://doi.org/10.1016/j. Jmatprotec.2020.116649.
  • 101. Hauser T, Da Silva A, Reisch RT, Volpp J, Kamps T, Kaplan AFH. Fluctuation effects in Wire Arc Additive Manufacturing of aluminium analysed by high-speed imaging. J Manuf Process. 2020;56:1088-98. https://doi.org/10.1016/j.jmapro.2020.05.030.
  • 102. Dinovitzer M, Chen X, Laliberte J, Huang X, Frei H. Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Addit Manuf. 2019;26:138-46. https://doi.org/10.1016/j.addma.2018.12.013.
  • 103. Zhou Y, Lin X, Kang N, Huang W, Wang J, Wang Z. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy. J Mater Sci Technol. 2020;37:143-53. https://doi.org/10.1016/j.jmst.2019.06.016.
  • 104. Rosli NA, Alkahari MR, Ramli FR, Sudin MN, Maidin S. Influence of process parameters in wire and arc additive manufacturing (WAAM) process. J Mech Eng. 2020;17:69-78. https://doi.org/10.24191/jmeche.v17i2.15301.
  • 105. Le VT, Mai DS, Doan TK, Paris H. Wire and arc additive manufacturing of 308L stainless steel components: optimization of processing parameters and material properties. Eng Sci Technol. 2021;24:1015-26. https://doi.org/10.1016/j.jestch.2021.01.009.
  • 106. Abioye TE, Folkes J, Clare AT. A parametric study of Inconel 625 wire laser deposition. J Mater Process Technol. 2013;213:2145- 51. https://doi.org/10.1016/j.jmatprotec.2013.06.007.
  • 107. Yildiz AS, Davut K, Koc B, Yilmaz O. Wire arc additive manufacturing of high-strength low alloy steels: study of process parameters and their influence on the bead geometry and mechanical characteristics. Int J Adv Manuf Technol. 2020;108:3391-404. https://doi.org/10.1007/s00170-020-05482-9.
  • 108. Zhao H, Zhang G, Yin Z, Wu L. A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol. 2011;211:488-95. https:// doi.org/10.1016/j.jmatprotec.2010.11.002.
  • 109. Ferreira RP, Scotti A. The concept of a novel path planning strategy for wire + arc additive manufacturing of bulky parts: pixel. Metals (Basel). 2021;11:1-22. https://doi.org/10.3390/met11 030498.
  • 110. Dwivedi R, Kovacevic R. Automated torch path planning using polygon subdivision for solid freeform fabrication based on welding. J Manuf Syst. 2004;23:278-91. https://doi.org/10.1016/ S0278-6125(04)80040-2.
  • 111. Wang X, Wang A, Li Y. A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule. Int J Adv Manuf Technol. 2019;103:3813-30. https://doi. org/10.1007/s00170-019-03706-1.
  • 112. Ding D, Pan Z, Cuiuri D, Li H. A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot Comput Integr Manuf. 2015;34:8-19. https://doi.org/10.1016/j.rcim.2015.01.003.
  • 113. Ding D, Pan Z, Cuiuri D, Li H, Larkin N. Adaptive path planning for wire-feed additive manufacturing using medial axis transformation. J Clean Prod. 2016;133:942-52. https://doi.org/10. 1016/j.jclepro.2016.06.036.
  • 114. Jafari D, Vaneker THJ, Gibson I. Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts. Mater Des. 2021;202: 109471. https://doi.org/10.1016/j.matdes.2021.109471.
  • 115. Li S, Zhang L-J, Ning J, Wang X, Zhang G-F, Zhang J-X, Na S-J, Fatemeh B. Comparative study on the microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas. Addit Manuf. 2020;34: 101206. https://doi.org/10.1016/j.addma.2020.101206.
  • 116. Ayarkwa KF, Williams SW, Ding J. Assessing the effect of TIG alternating current time cycle on aluminium wire+arc additive manufacture. Addit Manuf. 2017;18:186-93. https://doi.org/10. 1016/j.addma.2017.10.005.
  • 117. Mereddy S, Bermingham MJ, StJohn DH, Dargusch MS. Grain refinement of wire arc additively manufactured titanium by the addition of silicon. J Alloys Compd. 2017;695:2097-103. https://doi.org/10.1016/j.jallcom.2016.11.049.
  • 118. Monisha K, Shariff SM, Raju R, Manonmani J, Jayaraman S. Titanium boride and titanium silicide phase formation by high power diode laser alloying of B4C and SiC particles with Ti: microstructure, hardness and wear studies. Mater Today Commun. 2022;31: 103741. https://doi.org/10.1016/j.mtcomm.2022. 103741.
  • 119. Kennedy JR, Davis AE, Caballero AE, Williams S, Pickering EJ, Prangnell PB. The potential for grain refinement of Wire-Arc Additive Manufactured (WAAM) Ti-6Al-4V by ZrN and TiN inoculation. Addit Manuf. 2021;40: 101928. https://doi.org/10. 1016/j.addma.2021.101928.
  • 120. Rodrigues TA, Duarte VR, Tomás D, Avila JA, Escobar JD, Rossinyol E, Schell N, Santos TG, Oliveira JP. In-situ strengthening of a high strength low alloy steel during Wire and Arc Additive Manufacturing (WAAM). Addit Manuf. 2020;34: 101200. https://doi.org/10.1016/j.addma.2020.101200.
  • 121. Jhavar S, Jain NK, Paul CP. Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications. J Mater Process Technol. 2014;214:1102-10. https://doi.org/10.1016/j.jmatprotec.2013. 12.016.
  • 122. Alberti EA, Bueno BMP, D’Oliveira ASCM. Additive manufacturing using plasma transferred arc. Int J Adv Manuf Technol. 2016;83:1861-71. https://doi.org/10.1007/s00170-015-7697-7.
  • 123. Oliveira JP, Santos TG, Miranda RM. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Prog Mater Sci. 2020;107: 100590. https:// doi.org/10.1016/j.pmatsci.2019.100590.
  • 124. Casalino G, Michele D, Perulli P. FEM model for TIG hybrid laser butt welding of 6 mm thick austenitic to martensitic stainless steels. Procedia CIRP. 2020;88:116-21. https://doi.org/10. 1016/j.procir.2020.05.021.
  • 125. Oyama K, Diplas S, M’hamdi M, Gunnæs AE, Azar AS. Heat source management in wire-arc additive manufacturing process for Al-Mg and Al-Si alloys. Addit Manuf. 2019;26:180-92. https://doi.org/10.1016/j.addma.2019.01.007.
  • 126. Zhou Y, Qin G, Li L, Lu X, Jing R, Xing X, Yang Q. Formability, microstructure and mechanical properties of Ti-6Al-4V deposited by wire and arc additive manufacturing with different deposition paths. Mater Sci Eng A. 2020;772: 138654. https://doi.org/10.1016/j.msea.2019.138654.
  • 127. Deshmukh PS, Tomar K, Sathiaraj GD, Palani IA. Optimum strength and ductility of pure copper fabricated by Wire Arc Additive Manufacturing. Manuf Lett. 2022;33:24-8. https://doi. org/10.1016/j.mfglet.2022.06.005.
  • 128. Rodrigues TA, Duarte VR, Miranda RM, Santos TG, Oliveira JP. Ultracold-Wire and arc additive manufacturing (UC-WAAM). J Mater Process Technol. 2021;296: 117196. https://doi.org/10. 1016/j.jmatprotec.2021.117196.
  • 129. Wang S, Gu H, Wang W, Li C, Ren L, Wang Z, Zhai Y, Ma P. Study on microstructural and mechanical properties of an Al-Cu-Sn alloy wall deposited by double-wire arc additive manufacturing process. Materials (Basel). 2020;13:73. https://doi.org/ 10.3390/ma13010073.
  • 130. Chaudhari R, Parekh N, Khanna S, Vora J, Patel V. Effect of multi-walled structure on microstructure and mechanical properties of 1.25Cr-1.0Mo steel fabricated by GMAW-based WAAM Using Metal-Cored Wire. J Mater Res Technol. 2022;21:3386-96. https://doi.org/10.1016/j.jmrt.2022.10.158.
  • 131. Kannan AR, Shanmugam NS, Ramkumar KD, Rajkumar V. Studies on super duplex stainless steel manufactured by wire arc additive manufacturing. Trans Indian Inst Met. 2021;74:1673-81. https://doi.org/10.1007/s12666-021-02257-y.
  • 132. Nemani AV, Ghafar M, Nasiri A. Comparison of microstructural characteristics and mechanical properties of shipbuilding steel plates fabricated by conventional rolling versus wire arc additive manufacturing. Addit Manuf. 2020;32: 101086.
  • 133. Wu B, Pan Z, Ziping Y, van Duin S, Li H, Pierson E. Robotic skeleton arc additive manufacturing of aluminium alloy. Int J Adv Manuf Technol. 2021;114:2945-59. https://doi.org/10.1007/ s00170-021-07077-4.
  • 134. Zhang C, Li Y, Gao M, Zeng X. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A. 2018;711:415-23. https://doi. org/10.1016/j.msea.2017.11.084.
  • 135. Klein T, Schnall M. Control of macro-/microstructure and mechanical properties of a wire-arc additive manufactured aluminum alloy. Int J Adv Manuf Technol. 2020;108:235-44.
  • 136. Xue C, Zhang Y, Mao P, Liu C, Guo Y, Qian F, Zhang C, Liu K, Zhang M, Tang S, Wang J. Improving mechanical properties of wire arc additively manufactured AA2196 Al-Li alloy by controlling solidifcation defects. Addit Manuf. 2021;43: 102019. https://doi.org/10.1016/j.addma.2021.102019.
  • 137. Bi J, Shen J, Hu S, Zhen Y, Yin F, Bu X. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing. Mater Lett. 2020;276:10-3. https://doi.org/10.1016/j.matlet.2020.128185.
  • 138. Wang P, Zhang H, Zhu H, Li Q, Feng M. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: processing, microstructure, and mechanical behavior. J Mater Process Technol. 2021;288:1-12. https://doi. org/10.1016/j.jmatprotec.2020.116895.
  • 139. Fang X, Yang J, Wang S, Wang C, Huang K, Li H, Lu B. Additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: microstructure, mechanical property, and electromechanical corrosion performance. J Mater Process Technol. 2022;300:1-12. https://doi.org/10.1016/j.jmatprotec.2021.117430.
  • 140. Wei J, He C, Qie M, Li Y, Tian N, Qin G. Achieving high performance of wire arc additive manufactured Mg-Y-Nd alloy assisted by interlayer friction stir processing. J Mater Process Technol. 2023;311: 117809.
  • 141. Ying T, Zhao Z, Yan P, Wang J, Zeng X. Effect of fabrication parameters on the microstructure and mechanical properties of wire arc additive manufactured AZ61 alloy. Mater Lett. 2022;307:1-4.
  • 142. Klein T, Arnoldt A, Schnall M, Gneiger S. Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy. Jom. 2021;73:1126-34. https://doi.org/10.1007/s11837-021-04567-4.
  • 143. Guo Y, Pan H, Ren L, Quan G. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy. Mater Lett. 2019;247:4-6. https://doi.org/10.1016/j.matlet.2019.03.063.
  • 144. Zimermann R, Mohseni E, Lines D, Vithanage RKW, MacLeod CN, Pierce SG, Gachagan A, Javadi Y, Williams S, Ding J. Multi-layer ultrasonic imaging of as-built Wire + Arc Additive Manufactured components. Addit Manuf. 2021;48:1-14. https:// doi.org/10.1016/j.addma.2021.102398.
  • 145. Kumar N, Bhavsar H, Mahesh PVS, Srivastava AK, Bora BJ, Saxena A, Dixit AR. Wire Arc Additive Manufacturing-a revolutionary method in additive manufacturing. Mater Chem Phys. 2022;285: 126144. https://doi.org/10.1016/j.matchemphys.2022.126144.
  • 146. Dias M, Pragana JPM, Ferreira B, Ribeiro I, Silva CMA. Economic and environmental potential of wire-arc additive manufacturing. Sustainability. 2022;14:5197. https://doi.org/10.3390/su14095197.
  • 147. Yu Z, Pan Z, Ding D, Polden J, He F, Yuan L, Li H. A practical fabrication strategy for wire arc additive manufacturing of metallic parts with wire structures. Int J Adv Manuf Technol. 2021;115:3197-212. https://doi.org/10.1007/ s00170-021-07375-x.
  • 148. Tanvir ANM, Ahsan MRU, Ji C, Hawkins W, Bates B, Kim DB. Heat treatment effects on Inconel 625 components fabricated by wire + arc additive manufacturing (WAAM)-part 1: microstructural characterization. Int J Adv Manuf Technol. 2019;103:3785-98. https://doi.org/10.1007/s00170-019-03828-6.
  • 149. Fang X, Zhang L, Chen G, Huang K, Xue F, Wang L, Zhao J, Lu B. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering. Mater Sci Eng A. 2021;800: 140168. https://doi.org/10.1016/j.msea.2020.140168.
  • 150. Duarte VR, Rodrigues TA, Schell N, Miranda RM, Oliveira JP, Santos TG. Hot forging wire and arc additive manufacturing (HF-WAAM). Addit Manuf. 2020;35: 101193. https://doi.org/ 10.1016/j.addma.2020.101193.
  • 151. Zhai W, Wu N, Zhou W. Effect of interpass temperature on wire arc additive manufacturing using high-strength metal-cored wire. Metals (Basel). 2022;12:212. https://doi.org/10.3390/met12 020212.
  • 152. McAndrew AR, Alvarez Rosales M, Colegrove PA, Hönnige JR, Ho A, Fayolle R, Eyitayo K, Stan I, Sukrongpang P, Crochemore A, Pinter Z. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement. Addit Manuf. 2018;21:340-9. https://doi.org/10.1016/j.addma. 2018.03.006.
  • 153. Wu B, Pan Z, Ding D, Cuiuri D, Li H, Xu J, Norrish J. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process. 2018;35:127-39. https://doi.org/10.1016/j.jmapro.2018.08.001.
  • 154. Shen C, Pan Z, Cuiuri D, Ding D, Li H. Influences of deposition current and interpass temperature to the Fe3Al-based iron aluminide fabricated using wire-arc additive manufacturing process. Int J Adv Manuf Technol. 2017;88:2009-18. https://doi.org/10.1007/s00170-016-8935-3.
  • 155. Wu B, Pan Z, Ding D, Cuiuri D, Li H, Fei Z. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy. J Mater Process Technol. 2018;258:97-105. https://doi.org/10.1016/j.jmatprotec.2018.03. 024.
  • 156. Colegrove PA, Coules HE, Fairman J, Martina F, Kashoob T, Mamash H, Cozzolino LD. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol. 2013;213:1782-91. https://doi.org/10.1016/j.jmatprotec.2013. 04.012.
  • 157. Gu J, Ding J, Williams SW, Gu H, Bai J, Zhai Y, Ma P. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy. Mater Sci Eng A. 2016;651:18-26. https://doi.org/10. 1016/j.msea.2015.10.101.
  • 158. Zhang H, Wang X, Wang G, Zhang Y. Hybrid direct manufacturing method of metallic parts using deposition and micro continuous rolling. Rapid Prototyp J. 2013;19:387-94. https://doi.org/10.1108/RPJ-01-2012-0006.
  • 159. Le VT, Mai DS, Paris H. Influences of the compressed dry air-based active cooling on external and internal qualities of wire-arc additive manufactured thin-walled SS308L components. J Manuf Process. 2021;62:18-27. https://doi.org/10.1016/j.jmapro.2020.11.046.
  • 160. Hönnige JR, Davis AE, Ho A, Kennedy JR, Neto L, Prangnell P, Williams S. the effectiveness of grain refinement by machine hammer peening in high deposition rate wirearc AM Ti-6Al-4V. Metall Mater Trans A Phys Metall Mater Sci. 2020;51:3692-703. https://doi.org/10.1007/s11661-020-05781-6.
  • 161. Manogharan G, Yelamanchi B, Aman R, Mahbooba Z. Experimental study of disruption of columnar grains during rapid solidification in additive manufacturing. Jom. 2016;68:842-9. https://doi.org/10.1007/s11837-015-1800-2.
  • 162. Sun L, Guo C, Huang L, Jiang F, Xu K, Huang R. Effect and mechanism of inter-layer ultrasonic impact strengthening on the anisotropy of low carbon steel components fabricated by wire and arc additive manufacturing. Mater Sci Eng A. 2022;848: 143382. https://doi.org/10.1016/j.msea.2022.143382.
  • 163. Yang Y, Jin X, Liu C, Xiao M, Lu J, Fan H, Ma S. Residual stress, mechanical properties, and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing. Metals (Basel). 2018;8:934. https://doi.org/10.3390/met8110934.
  • 164. Saleh B, Jiang J, Fathi R, Al-hababi T, Xu Q, Wang L, Song D, Ma A. 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges. Compos Part B Eng. 2020;201:1-46. https://doi.org/10.1016/j. Compositesb.2020.108376.
  • 165. Fletcher MJ. The future for WAAM (2018). https://additivemanufacturing.com/2019/08/27/the-future-for-waam/ (Accessed Apr 21, 2022).
  • 166. Evans SI, Wang J, Qin J, He Y, Shepherd P, Ding J. A review of WAAM for steel construction-manufacturing, material and geometric properties, design, and future directions. Structures. 2022;44:1506-22. https://doi.org/10.1016/j.istruc.2022.08.084.
  • 167. Feucht T, Lange J, Waldschmitt B, Schudlich AK, Klein M, Oechsner M. Welding process for the additive manufacturing of cantilevered components with the waam. Adv Struct Mater. 2020;2020:67-78. https://doi.org/10.1007/978-981-15-2957-3_5.
  • 168. Ye J, Kyvelou P, Gilardi F, Lu H, Gilbert M, Gardner L. An end-to-end framework for the additive manufacture of optimized tubular structures. IEEE Access. 2021;9:165476-89. https://doi. org/10.1109/ACCESS.2021.3132797.
  • 169. Baier D, Bachmann A, Zaeh MF. Towards wire and arc additive manufacturing of high-quality parts. Procedia CIRP. 2021;96:213-8. https://doi.org/10.1016/j.procir.2021.01.077.
  • 170. Halisch C, Gaßmann C, Seefeld T. Investigating the reproducibility of the wire arc additive manufacturing process. Adv Mater Res. 2021;1161:95-104. https://doi.org/10.4028/www.scientifc.net/amr.1161.95.
  • 171. Fixter J, Gu J, Ding J, Williams SW, Prangnell PB. Preliminary investigation into the suitability of 2xxx alloys for Wire-Arc Additive Manufacturing. Mater Sci Forum. 2017;877:611-6. https://doi.org/10.4028/www.scientifc.net/MSF.877.611.
  • 172. Priarone PC, Pagone E, Martina F, Catalano AR, Settineri L. Multi-criteria environmental and economic impact assessment of wire arc additive manufacturing. CIRP Ann. 2020;69:37-40. https://doi.org/10.1016/j.cirp.2020.04.010.
  • 173. Vishnukumar M, Pramod R, RajeshKannan A. Wire arc additive manufacturing for repairing aluminium structures in marine applications. Mater Lett. 2021;299:1-5. https://doi.org/10.1016/j.matlet.2021.130112.
  • 174. Muvunzi R, Mpofu K, Daniyan I, Fameso F. Analysis of potential materials for local production of a rail car component using additive manufacturing. Heliyon. 2022;8: e09405. https://doi.org/10.1016/j.heliyon.2022.e09405.
  • 175. Fletcher M. More manufacturers take a closer look at wire arc additive manufacturing (WAAM). https://www.fabricatingandmetalworking.com/2020/05/more-manufacturers-take-a-closerlook-at-wire-arc-additive-manufacturing-waam/ (Accessed Oct 20, 2022).
  • 176. Josten A, Höfemann M. Arc-welding based additive manufacturing for body reinforcement in automotive engineering. Weld World. 2020;64:1449-58.
  • 177. Lange J, Feucht T, Erven M. 3D printing with steel: additive manufacturing for connections and structures. Steel Constr. 2020;13:144-53. https://doi.org/10.1002/stco.202000031.
  • 178. Goh A. Shell printed and deployed industry first leak repair clamp (2022). https://www.shell.com/energy-and-innovation/ digitalisation/digital-technologies/3d-printing/shell-printed-and-deployed-industry-frst-leak-repair-clamp.html (Accessed Dec 4, 2022).
  • 179. Szost BA, Terzi S, Martina F, Boisselier D, Prytuliak A, Pirling T, Hofmann M, Jarvis DJ. A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Mater Des. 2016;89:559-67. https://doi.org/10.1016/j.matdes.2015.09.115.
  • 180. Ding J, Colegrove P, Mehnen J, Williams S, Wang F, Almeida PS. A computationally effcient finite element model of wire and arc additive manufacture. Int J Adv Manuf Technol. 2014;70:227-36. https://doi.org/10.1007/s00170-013-5261-x.
  • 181. Bermingham MJ, Nicastro L, Kent D, Chen Y, Dargusch MS. Optimising the mechanical properties of Ti-6Al-4V components produced by wire + arc additive manufacturing with post-process heat treatments. J Alloys Compd. 2018;753:247-55. https://doi. org/10.1016/j.jallcom.2018.04.158.
  • 182. Hönnige JR, Colegrove PA, Ahmad B, Fitzpatrick ME, Ganguly S, Lee TL, Williams SW. Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling. Mater Des. 2018;150:193-205. https:// doi.org/10.1016/j.matdes.2018.03.065.
  • 183. Sun R, Li L, Zhu Y, Guo W, Peng P, Cong B, Sun J, Che Z, Li B, Guo C, Liu L. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. J Alloys Compd. 2018;747:255-65. https://doi.org/10.1016/j.jallcom.2018.02.353.
  • 184. Wang H, Jiang W, Ouyang J, Kovacevic R. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J Mater Process Technol. 2004;148:93-102. https://doi.org/10.1016/j.jmatprotec.2004.01. 058.
  • 185. Wu Q, Ma Z, Chen G, Liu C, Ma D, Ma S. Obtaining fine microstructure and unsupported overhangs by low heat input pulse arc additive manufacturing. J Manuf Process. 2017;27:198-206. https://doi.org/10.1016/j.jmapro.2017.05.004.
  • 186. He T, Yu S, Shi Y, Huang A. Forming and mechanical properties of wire arc additive manufacture for marine propeller bracket. J Manuf Process. 2020;52:96-105. https://doi.org/10.1016/j.jmapro.2020.01.053.
  • 187. Nagamatsu H, Sasahara H, Mitsutake Y, Hamamoto T. Development of a cooperative system for wire and arc additive manufacturing and machining. Addit Manuf. 2020;31: 100896. https://doi.org/10.1016/j.addma.2019.100896.
  • 188. Li Z, Liu C, Xu T, Ji L, Wang D, Lu J, Ma S, Fan H. Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy. Mater Sci Eng A. 2019;742:287-94. https://doi.org/10.1016/j.msea.2018.11.022.
  • 189. Wang J, Lin X, Li J, Xue A, Liu F, Huang W, Liang E. A study on obtaining equiaxed prior-β grains of wire and arc additive manufactured Ti-6Al-4V. Mater Sci Eng A. 2020;772: 138703. https://doi.org/10.1016/j.msea.2019.138703.
  • 190. Martina F. Investigation of methods to manipulate geometry, microstructure and mechanical properties in titanium large scale Wire+Arc additive manufacturing (2014).
  • 191. Bermingham MJ, McDonald SD, StJohn DH, Dargusch MS. Beryllium as a grain refiner in titanium alloys. J Alloys Compd. 2009;481:L20-3. https://doi.org/10.1016/j.jallcom.2009.03.016.
  • 192. Zhang D, Qiu D, Gibson MA, Zheng Y, Fraser HL, StJohn DH, Easton MA. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature. 2019;576:91-5. https://doi.org/10.1038/s41586-019-1783-1.
  • 193. Issariyapat A, Visuttipitukul P, Umeda J, Kondoh K. Refined grain formation behavior and strengthening mechanism of α-titanium with nitrogen fabricated by selective laser melting. Addit Manuf. 2020;36: 101537. https://doi.org/10.1016/j.addma. 2020.101537.
  • 194. Derekar KS, Addison A, Joshi SS, Zhang X, Lawrence J, Xu L, Melton G, Grifiths D. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium. Int J Adv Manuf Technol. 2020;107:311-31. https://doi. org/10.1007/s00170-020-04946-2.
  • 195. Wang J, Pan Z, Wang L, Su L, Carpenter K, Wang J, Wang R, Li H. In-situ dual wire arc additive manufacturing of NiTi-coating on Ti6Al4V alloys: microstructure characterization and mechanical properties. Surf Coat Technol. 2020;386: 125439. https://doi.org/10.1016/j.surfcoat.2020.125439.
  • 196. Li Y, Su C, Zhu J. Comprehensive review of wire arc additive manufacturing: hardware system, physical process, monitoring, property characterization, application and future prospects. Results Eng. 2022;13: 101465. https://doi.org/10.1016/j.rineng. 2021.100330.
  • 197. Çam G. Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM). Mater Today Proc. 2022;62:77-85. https://doi.org/10.1016/j.matpr.2022.02.137.
  • 198. Zhou W, Shen C, Hua X, Zhang Y, Wang L, Xin J, Li F. Twin-wire directed energy deposition-arc of Ti-48Al-2Cr-2Nb alloy: feasibility, microstructure, and tensile property investigation. Mater Sci Eng A. 2022;850: 143566. https://doi.org/10.1016/j.msea.2022.143566.
  • 199. Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P. Wire + Arc additive manufacturing. Mater Sci Technol (United Kingdom). 2016;32:641-7. https://doi.org/10.1179/1743284715Y.0000000073.
  • 200. Zhang K, Chermprayong P, Xiao F, Tzoumanikas D, Dams B, Kay S, Kocer BB, Burns A, Orr L, Choi C, Darekar DD, Li W, Hirschmann S, Soana V, Ngah SA, Sareh S, Choubey A, Margheri L, Pawar VM, Ball RJ, Williams C, Shepherd P, Leutenegger S, Stuart-Smith R, Kovac M. Aerial additive manufacturing with multiple autonomous robots. Nature. 2022;609:709-17. https:// doi.org/10.1038/s41586-022-04988-4.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-009acace-7c09-419a-b29e-a394e1cbeb4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.