PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prospects for the Implementation of New Materials and Technologies in the Aerospace Industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Perspektywy wdrożenia nowych materiałów i technologii w przemysle lotniczym
Języki publikacji
EN
Abstrakty
EN
This article considers the main materials used to make aircraft, both fuselage and engines. First, the problems that force developers to introduce new materials in aircraft production are identified. We then present features of the introduction of heat-resistant titanium alloys, ways of improving the mechanical properties of parts made of titanium alloys, and methods of manufacturing complex details. Other promising materials for the aviation industry, such as high-entropy alloys, quasicrystals, carbon-carbon materials, and nickel foam, are also considered.
PL
W artykule rozważono główne materiały stosowane w budowie samolotów, zarówno w kadłubach jak w silnikach. Najpierw uwagę zwrócono na problemy, które skłaniają konstruktorów do wprowadzania nowych materiałów do produkcji samolotów. Następnie przedstawiono charakterystykę wprowadzania żaroodpornych stopów tytanu, sposoby poprawy własności mechanicznych części wykonanych ze stopów tytanu oraz metody wytwarzania złożonych detali. Rozważono również inne materiały perspektywiczne dla przemysłu lotniczego, takie jak stopy o wysokiej entropii, kwazikryształy, materiały typu węgiel/węgiel oraz pianki niklowe.
Słowa kluczowe
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 35 poz., fot., rys.
Twórcy
autor
  • PJSC "Titanium Institute", 180 Sobornyi Av., Zaporizhzhya, 69035, Ukraine
  • National Science Center "Kharkiv Institute of Physics and Technology", Akademicha street 1, Kharkiv, 61108, Ukraine
Bibliografia
  • [1] Kandasamy Jayakrishna, Vishesh R. Kar, Mohamed T.H. Sultan & Murugan Rajesh, 2018, 1 - Materials selection for aerospace components, Ed.: Mohammad Jawaid, Mohamed Thariq, In Woodhead Publishing Series in Composites Science and Engineering, Sustainable Composites for Aerospace Applications, Woodhead Publishing, Pages 1-18, DOI: 10.1016/B978-0-08-102131- 6.00001-3.
  • [2] Huda, Z. & Edi, P., 2013, “Materials selection in design of structures and engines of supersonic aircrafts: A review”. Materials & Design, 46, pp. 552-560. DOI: 10.1016/j.matdes.2012.10.001.
  • [3] Mitsuhiro, T. & Masashi, K., 2014, “Making lighter aircraft engines with titanium aluminide blades”. IHI Engineering Review, 47(1), pp. 10-13.
  • [4] Mouritz, A.P., 2012, Introduction to aerospace materials, 1st ed., Woodhead Publishing, Suite, Philadelphia, USA.
  • [5] Alderliesten R., 2018, Introduction to Aerospace Structures and Materials. Netherlands; pp. 41-58. DOI: 10.5074/t.2018.003.
  • [6] Rolls-Royce. http://www.rolls-royce.com/about/technology/gas_turbine tech/. Accessed on 19-12-2012.
  • [7] AMG. http://www.amg-nv.com/Innovation/Titanium-Aluminide/default.aspx. Accessed on 18-01-2013.
  • [8] Schafrik, R. & Sprague, R., 2004, “Siga of gas turbine materials: Part I; Modern aeropropulsion is possible only because of the engine materials that have enabled continuous improvement in high-temperature operation, higher power, and reduced weight over the past 50 years. This is the first of a four-part series about development of gas turbine engine materials”. Advanced materials & Processes, 162(3), pp. 33-36.
  • [9] ‘P1100G - MTU Aeroengines’, available at http://www.mtu.de/engines/civil-aircraftengines/narrowbody-and-regional-jets/pw1000g/, Accessed on 18-11-2015.
  • [10] Clemens, H., Smarsly, W., Gütherand, V. and Mayer, S., 2015, “Advanced intermetallic titanium aluminides”, Proceedings of the 13th World Titanium Conference, San Diego, USA.
  • [11] Clemens, H. & Mayer, S., 2016, “Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties”. Materials at High Temperatures, 33(4-5), pp. 560-570, DOI: 10.1080/09603409.2016.1163792.
  • [12] Dada, M., Popoola, P., Adeosun, S., & Mathe, N. R., 2019, “High entropy alloys for aerospace applications”. IntechOpen. DOI: 10.5772/intechopen.84982.
  • [13] Castellanos, S. D., et al., 2019, “Machinability of titanium aluminides: A review”. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(3), pp. 426-451. DOI: 10.1177/1464420718809386.
  • [14] Hood, R., 2010, “The machinability of a gamma titanium aluminide intermetallic”. Doctoral dissertation, University of Birmingham.
  • [15] Yanko T.B. & Datsenko R.B., 2018, “Method of dynamic high-speed casting of metal microspheres”, Pat. UA 129499.
  • [16] Yanko T.B. & Datsenko R.B., 2019, “Device for continuous casting of metal wires of small diameters from the active metals”. Pat. UA 134397.
  • [17] 2009, “High-temperature resistant aero engine coatings”, Aircraft engineering and Aerospace Technology, 81(6). DOI: 10.1108/aeat.2009.12781fad.001.
  • [18] Hetmańczyk, M., Swadźba, L. and Mendala, B., 2007, “Advanced materials and protective coatings in aero-engines application”. Journal of Achievements in Materials and Manufacturing Engineering, 24(1), pp. 372-381.
  • [19] Alqallaf, J., Ali, N., Teixeira, & Addali, A., 2020, “Solid Particle erosion Behaviour and Protective Coatings for Gas Turbine Compressor Blades-A Review”. Processes, 8(8), pp. 984. DOI: 10.3390/pr8080984.
  • [20] Beardsley, M. Brad, 2008, “Potential use of quasicrystalline materials as thermal barrier coatings for diesel engine components”. retrospective Theses and Dissertations. 15661. DOI: 10.31274/rtd180813-16873.
  • [21] Sánchez, A., Garcia de Blas, F.J., Algaba, J.M. et al., 1998, Application of Quasicrystalline Materials As Thermal Barriers in Aeronautics and Future Perspectives of Use For These Materials. MRS Online Proceedings Library, 553, pp. 447-458. DOI: 10.1557/PrOC-553-447.
  • [22] Kaiser, A. Shklover, V., SteurerIvan, W. & Vjunitsky, I., 2003, “Quasikristalline Legierungen und deren Verwendung als Beschichtung”. Pat. DE10358813A1.
  • [23] Clossen-von Lanken Schulz, Michael Kadau, Kai, 2012, “Turbine blade and method for producing a turbine blade with high surface hardness”. Pat. DE102012219856A1.
  • [24] Milman, Yu.V., Efymov, N.A., Goncharova, IV, 2012, “Quasicrystals - a new class of solids with unique physical properties” (in russian). Electron microscopy and strength of materials: Sat. scientific tr. Kyiv: IPM NAS of Ukraine, 18, pp. 3-15. http://dspace.nbuv.gov.ua/handle/123456789/63528.
  • [25] Airbus reveals new zero-emission concept aircraft. https://www.airbus.com/newsroom/pressreleases/en/2020/09/airbus-reveals-new-zeroemission-concept-aircraft.html. Accessed on 21-09-2020.
  • [26] “Fuel cell aircraft HY4 makes maiden flight”. https://www.theengineer.co.uk/fuel-cell-aircraft-hy4-makes-maiden-flight. The engineer. 2016-09-30. retrieved 2016-10-19.
  • [27] Dmytrenko, O.E., Dubinko, V.I., Borysenko, V. & Irwin. K., 2020, “Synthesis of hydrogen storage materials in a Ti-Zr-Ni system using the hydride cycle technology during dehydrogenation by an electron beam in a vacuum”. Problems of atomic science and technique (PAST), 1(125), pp. 198-205.
  • [28] Paserin, V., Marcuson, S., Shu, J. & Wilkinson, D.S., 2003, “The Chemical Vapor Deposition Technique for Inco Nickel Foam Production-Manufacturing Benefits and Potential Applications”. Cellular Metals and Metal Foaming Technology, Banhart, J., Fleck, N.A., eds. MIT-Verlag: Berlin, Germany; pp. 31-38.
  • [29] Farafonov, D.P., Migunov, V.P., Saraev, A.A. & Leschev, N.E., 2018, “Abradability and erosion resistance of seals in turbine engine air-gas channel” (in russian). Proceedings of VIAM, 8(68). DOI: 10.18577/2307-6046-2018-0-8-70-80.
  • [30] Paun, F., Gasser, S. & Leylekian, L., 2003, “Design of materials for noise reduction in aircraft engines”. Aerospace Science and Technology, 7(1), pp. 63-72.
  • [31] Scarponi, C., 2016, “Carbon-carbon composites in aerospace engineering”. Advanced Composite materials for Aerospace engineering. Processing, Properties and Applications, 2016, pp. 385-412. DOI: 10.1016/B978-0-08-100037-3.00013-4.
  • [32] Soutis, C., 2005, “Carbon fiber reinforced plastics in aircraft construction”. Materials Science and Engineering: A, 412(1-2), pp. 171-176. DOI: 10.1016/j.msea.2005.08.064.
  • [33] Carbon Fiber in Aerospace Applications. https://www.pcmi-mfg.com/blog/carbon-fiber-inaerospace-applications. Accessed on 19-12-2020.
  • [34] Savage, G., 1993, Carbon-carbon Composites, Springer Science&Business Media, DOI: 10.1007/978-94-011-1586-5.
  • [35] GE Redesigns Carbon Composite Blades for GE9X Engine. https://www.designnews.com/geredesigns-carbon-composite-blades-ge9x-engine. Accessed on 09-01-2021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0097e780-bf2b-40f2-bc14-82b417856d5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.