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Abstract

This article considers the main materials used to make aircraft, both fuselage and engines. First,
the problems that force developers to introduce new materials in aircraft production are identified.
We then present features of the introduction of heat-resistant titanium alloys, ways of improving
the mechanical properties of parts made of titanium alloys, and methods of manufacturing complex
details. Other promising materials for the aviation industry, such as high-entropy alloys, quasicrystals,
carbon-carbon materials, and nickel foam, are also considered.
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1. INTRODUCTION

Opverall, aerospace technologies currently make use of a wide range of different materials (see Fig. 1).
However, given the increasing priority being placed on sustainable development and given the constant
economic pressure for improved cost-efficiency, the aerospace industry is witnessing continuous ongoing
improvement of hardware, materials and technologies. New materials, designs and manufacturing
techniques are being developed, existing methods of obtaining products and structures are being
improved, and new methods of enhancing the characteristics of existing materials are being developed
(1, 2].
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Fig. 1. Use of materials in the Boeing 747 (adapted from Brown, 2014).

The materials used in aerospace are currently mostly metal alloys, but they also include polymer-
based and carbon materials that have either been developed for aerospace use or become well-known as
a result of such applications. The aerospace industry often poses stringent requirements in terms of
exceptional performance, strength or heat resistance, even at significant manufacturing or processing
cost. Other materials are selected for their long-term reliability, especially for their resistance to fatigue,
in this safety-focused field. However, the operational specifications for various components, assemblies
and structures mean that the choice of materials with desired properties differ radically from detail to
detail.

The need to reduce pollutant emissions and also to bolster economic gains prompts design engineers
to develop aviation transport systems that provide optimal performance with a minimum level of energy
consumption [3]. Aviation technologies require an optimal combination of both economic and
environmental indicators, as well as safe and reliable engineering solutions. This outcome can be attained
using high-performance materials with low density, in combination with design solutions [4, 5].

In this article we review the main materials used to make aircraft components, and consider
the problems driving developers to introduce new materials. We then consider a range of new materials
and technologies now on the horizon, including heat-resistant titanium alloys, techniques for bolstering
the mechanical properties of titanium alloys, as well as such new materials as high-entropy alloys,
quasicrystals, carbon-carbon materials, and nickel foam.

2. TITANIUM ALLOYS

In view of the above circumstances, titanium and its alloys are currently employed in fairly large
volumes in the production of aerospace technology, but there are also a number of competing materials
in use or in research (see Fig. 2).
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Fig. 2. Materials competing with titanium — Engine vs Aerostructure [6].

Titanium is widely used in aerospace due to its unsurpassed properties: corrosion resistance, durability,
ductility, and low density. However, modern requirements for the materials of aircraft body elements
and engine parts limit the use of standard titanium alloys. Mainly, to solve the structural problems in “hot
zones” or loaded areas, nickel superalloys are mostly used. As Fig. 3 illustrates, titanium alloys are used
at temperatures below 730 °C. However, the specific density of such nickel alloys is significantly higher
than titanium alloys. Nickel alloys have a density of about 8 g/cm?, in contrast to titanium alloys, with

a density of 4-5 g/cm?®.
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Fig. 3. Titanium alloys for Aircraft Engines [7].



4 TARAS YANKO AND OLEXII DMYTRENKO

Current commercial aircraft engines typically range in weight from 2 metric tons to more than 8
tons, with metal alloys comprising 85-95% of the weight of the engine [8]. The implementation of new
ligheweight alloys instead of nickel alloys is a current problem, because about half of the materials in

an aircraft engine are nickel alloys (see Fig. 4).
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Fig. 4. Breakdown of materials used in a General Electric engine (CF6) for Boeing.

Using TNB alloy (Ti—43.5A1-4Nb—1Mo0—0.1B at.-%) instead of Ni-superalloys for high speed LPT
blade applications in PW1100G™, engines are claimed to operate with very high Bypass Ratio of 12:1,
use up to 12—15% less fuel, making engines 15—20db less noisy with lower emissions (2,700~3,600 tons
less CO, per year per aircraft, and 50-55% less NOx) [9, 10]. Replacing Ni-based superalloy parts with
titanium aluminides will reduce the structural weight of components by 20-30%. General Electric have
tried to introduce such y-TiAl alloys into LPT blade production, in particular for the GEnx aircraft
engine (www. geaviation.com).

Currently, the following industrial alloys of the aluminide type have been developed: VT1-4 (Russia),
Ti-22-23 (United States), Ti-22-20-3 (China), Ti-22-20-2 (]apan), Ti-22-20-2-0,5 (France). These
alloys are based on Ti(20-23)-Al(20-25)-Nb(1-5) (at.-%) composition. Other elements include:
V+Mo+Zr+Si (Russia), Ta (China), W (]apan), Mo+Si (France), B (United States) and others [11].
Further developments in the improvement of such alloys include the use of more complex systems of
gamma-alloys, high-entropy systems, and dispersed reinforced materials or composite materials.

3. HIGH ENTROPY ALLOYS

Another type of material with remarkable hardness, yield stress, high-temperature oxidation resistance
and fracture strength can be found in high entropy alloys (HEAs). Such alloys have a good work
hardenability and plastic strain. Moreover, HEAs exhibit technologically attractive magnetic properties
together with good erosive and wear resistance. In view of such properties, HEAs can be used as
a refractory, fatigue-resistant material. In the form of films and coatings resistant to corrosion surface
layers, such materials can prevent destructive diffusion for various structural elements of jet engines [12].

The widespread introduction of such materials is limited by the complexity of production and
machining [13, 14]. Modern additive technologies allow near net shape details to be obtained.
The widespread use of 3D printing for alloys of this type, at the present stage of development in industrial
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batch production, remains restrained in practice by the high cost of equipment and raw materials for
production in comparison with traditional technologies. The introduction of technologies of precision
microsphere casting [15] and continuous wire casting [16] may help to resolve these issues. HEA powder
is produced through dynamic high-speed casting of microspheres using a multipoint plasma system.
It is possible to use industrial or originally produced wires as raw materials. Using this complex installation
of powder and wire production for printing, in combination with a 3D-printer for the manufacture of
metal alloys, offers the most effective and economically viable way of product manufacturing by
3D-printing.

Another way to boost the heat resistance of aircraft engine parts involves applying heat-resistant
coatings [17, 18, 19]. Enhanced engine efficiency, ecology and reliability can be achieved with
the application of protective coatings, through a notable reduction of their manufacturing weight.
This new trend in coating system development includes depositing multilayer, gradient and modified
coatings.

4. QUASICRYSTALS

Another promising type of material for thermal barrier coatings is quasicrystals (QC): inter-metallic
phases where the structure of metal is represented by the geometrical figure known as the icosahedron
(Fig. 5). Normally, metal unit cells are based on cube, tetra- and/or octahedron shapes.
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Fig. 5. Unit cells of quasi crystals and SEM of d-QC Al,3Cu;Cry¢ stable decagonal QC.
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Quasi crystals could be considered an intermediate state between crystals and amorphous materials.
Synthesis of such phases requires higher cooling and crystallization rates as compared to those for
conventional processes.

Some QCs have extremely low thermal conductivity, which makes it possible to use coatings made
of them as thermal barriers in elements of various engines [20]. It is notable that QCs possess thermal
expansion coefficient values close to that of structural metal, bringing increased resistance to thermal
cycling.

Bench tests of engines with QC Al——Co—Fe—Cir as thermal barriers have been successfully carried
out and also patented [19, 21, 22, 23]. In the United States, QCs are expected to be used for coatings
on rocket bodies due to their high hardness and wear resistance at elevated temperatures [24].

The urgent need to reduce global emissions raises the question of developing more environmentally
friendly technologies. Some modern aviation projects are considering ways of using hydrogen as a fuel,
in liquid or gaseous form [25, 26]. Therefore, there is a need to develop technologies and materials that
either allow significant amounts of hydrogen to be accumulated, or create conditions for rapid, safe and
efficient production of hydrogen while air travel is underway. The use of QCs or compounds based on
the Laves phase C14 L-Ti-Zr-Ni, capable of reversible absorption of significant amount of hydrogen, offer
promising avenues of research for hydrogen energy [27].

5. NICKEL FOAM

Another material that can significantly improve the hydrogen production conditions for green aviation
is porous nickel foam. High-quality Ni foam is used as the electrode material in HEV batteries. Nickel’s
chemical purity, large specific surface area and uniform layer thickness make it possible to obtain nickel
foam with a specific weight of 0.15 g/cm?. Nickel foam obtained by the carbonyl scheme offers
an impressive combination of low density with high ductility and low thermal conductivity [28].

One of the effective ways of improving the characteristics of the gas turbine engine lies in reducing
the radial gaps between the tips of the rotor blades and the working rings of the stator, as well as the gaps
in the labyrinth seals. Studies have shown that 5% of engine efficiency is lost due to leaks in radial
clearances [29]. To eliminate these defects, run-in coatings and materials are used.

The key requirements for such materials include:
¢ alow coefficient of friction and low hardness;

* being easily run-in; if necessary, the seal material should allow the blade ends to easily cut into, while
at the same time not wearing out the blade material;

* having sufficient erosion resistance, working effectively throughout the entire resource of the unit;

* having sufficient anti-seize properties;

* when plunging, the seal material must not crack, crumble;

* particles that have separated from the seal material as a result of cutting should be carried away by
the gas flow along the gas path and not stick to engine parts; particles should in particular not stick
to parts and blades that have perforations for air cooling;

* titanium blades, when touching and cutting into the seal material, should not give rise to sparks that
could cause an engine fire;

¢ the seal material must have sufficient heat resistance.

Given these requirements, porous nickel foam is the optimal material for use in this area (Fig. 6).
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Fig. 6. Nickel foam after heat treatment.

Applications of Ni foam as sound-absorbing structures and structural elements of ultra-light aircraft
are under development [30].

6. CARBON-CARBON COMPOSITES

Carbon-carbon (C-C) composites are a group of advanced materials made of carbon. They consist
of carbon matrix based on carbon fibres, embedded precursors and carbon nanotubes (CNTs). Carbon-
carbon matrix composites have an advanced combination of mechanical properties, which makes them
highly interesting engineering materials for aerospace industries. The main applications of C-C
composites in the aerospace industry lie in high friction systems for braking devices. There are also
examples of C-C composite applications in heat extreme conditions in heat-shields or nozzles in rocket
motors, because of the high load-bearing ability of C-C composites at high temperatures [31, 32, 33, 34].
There are successful cases of carbon composite fan blades, which will debut in the GE9X [35]. They are
part of the fourth generation of such blades and will also have improved aerodynamics. Existing GE
engines that incorporate carbon composite fan blades are the GE90-94B, GE90-115B, and GEnx

engines.
CONCLUSIONS

The main factor driving the development of new materials and technologies in the aerospace sector
is the need to reduce aircraft weight, thereby lowering harmful emissions. Another direction of
technological progress towards resolving the problem of emissions involves the development of hydrogen
technologies and materials. Further development of advanced technologies lies in the creation of new
materials with both complex chemical composition and composite structure. This promising approach
will create ultra-light, corrosion-resistant, heat-resistant materials with exceptional mechanical properties.
In this article we have reviewed a number of promising materials and technologies in this respect: new
alloys based on refractory metals such as titanium and zirconium, high-entropy alloys, quasicrystals, as
well as carbon-carbon materials and nickel foam.
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PERSPEKTYWY WDROZENIA NOWYCH MATERIALOW
ITECHNOLOGII W PRZEMYSLE LOTNICZYM

Abstrakt

W artykule rozwazono gtéwne materialy stosowane w budowie samolotéw, zaréwno w kadtubach jak
w silnikach. Najpierw uwagg zwrécono na problemy, ktére sktaniajg konstruktoréw do wprowadzania
nowych materialéw do produkeji samolotéw.

Nastepnie przedstawiono charakterystyke wprowadzania zaroodpornych stopéw tytanu, sposoby
poprawy wiasno$ci mechanicznych czgéci wykonanych ze stopéw tytanu oraz metody wytwarzania
zozonych detali. Rozwazono réwniez inne materialy perspektywiczne dla przemystu lotniczego, takie jak
stopy o wysokiej entropii, kwazikrysztaly, materialy typu wegiel/wegiel oraz pianki niklowe.

Stowa kluczowe: silnik, stopy, przemyst lotniczy, proszek, materiat, metal



