PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of Petroleum Refinery Wastewater by Graphite–Graphite Electro Fenton System Using Batch Recirculation Electrochemical Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water pollution and the lack of access to clean water are general global problems that result from the expansion of industrial and agricultural activities. Petroleum refinery wastewaters are considered as a major challenge to the environment and their treatment is mandatory. The present work investigated the removal of chemical oxygen demand (COD) from petroleum refinery effluents generated from the Al-Dewaniya petroleum refinery plant located in Iraq by utilizing a novel graphite–graphite electro-Fenton (EF) system. The electrochemical reactor was a tubular type with a cylindrical cathode made from porous graphite and concentric porous graphite rode acts as an anode. By adopting the response surface methodology (RSM), the impacts of different operating variables on the COD removal were investigated. The optimal conditions were a current density of 25 mA/cm2, FeSO4 concentration of 1.4 mM, and electrolysis time of 90 minutes, which resulted in the COD removal efficiency (RE%) of 99% at a specific energy consumption (SEC) of 10.34 kWh/kg COD. The results indicated that both current density and concentration of FeSO4 have a major impact on the elimination of COD, while time has a minor effect. The adequacy of the model equation was demonstrated by its high R2 value (0.987). The present work demonstrated that the graphite–graphite EF system could be considered as an effective approach for removing of COD from petroleum refinery wastewaters.
Rocznik
Strony
291--303
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Chemical Engineering Department, University of Al-Qadisiyah, Al-Qdisiyyah, 58002, Iraq
  • Department of Biochemical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 10071, Iraq
Bibliografia
  • 1. Abbar A., Fahim A. 2020. Treatment of petroleum refinery wastewater by electro-Fenton process using porous graphite electrodes. Egyptian Journal of Chemistry, 63(12), 4805–4819. DOI: 10.21608/ejchem.2020.28148.2592
  • 2. Adimi M., Mohammad Pour M., Fathinejad Jirandehi H. 2017. Treatment of Petrochemical wastewater by Modified electro - Fenton Method with Nano Porous Aluminum Electrode. J. Water Environ. Nanotechnol., 2(3), 186–194.
  • 3. Ahmadi E., Shokri B., Mesdaghinia A., Nabizadeh R., Reza Khani M., Yousefzadeh S., Salehi M., Yaghmaeian K. 2020. Synergistic effects of α-Fe2O3-TiO2 and Na2S2O8 on the performance of a non-thermal plasma reactor as a novel catalytic oxidation process for dimethyl phthalate degradation, Sep. Purif. Technol., 250, 117185.
  • 4. Alverez-Gallegos A., Pletcher D. 1999. Electrochemical Treatment of Wastewater containing polyaromatic organic pollutants, Electrochemi. Acta, 44, 2483–2492.
  • 5. Arunachalam R., Annadurai G. 2011. Optimized Response Surface Methodology for Adsorption of Dyestuff from Aqueous Solution. Environ J., Sci. Technol., 4(1), 65–72.
  • 6. Augulyte L., Kliaugaite D., Racys V., et al. 2009. Multivariate analysis of a biologically activated carbon (BAC) system and its efficiency for removing PAHs and aliphatic hydrocarbons from wastewater polluted with petroleum products. Journal of Hazardous Materials, 170(1), 103–110.
  • 7. Bayat M., Sohrabi M., Royaee S.J. 2012. Degradation of phenol by heterogeneous Fenton reaction using Fe/clinoptilolite. Journal of Industrial and Engineering Chemistry, 18(3), 957–962.
  • 8. Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A. 2008. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry, Talanta, 76(5), 965–977.
  • 9. Brillas E., Sires I., Oturan M.A. 2009. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev., 109, 6570–6631.
  • 10. Catalkaya E.C., Kargi F. 2009. Advanced oxidation and mineralization of simazine using Fenton’s reagent. Journal of Hazardous Materials, 168(2–3), 688–694.
  • 11. Cheng-chun J., Jia-fa Z. 2007. Progress and prospect in electro-Fenton process for wastewater treatment, J. Zhejiang Univ. Sci. A, 8(7), 1118–1125.
  • 12. Coelho A., Castro A.V., Dezotti M., Sant’Anna Jr G.L. 2006. Treatment of petroleum refinery sourwater by advanced oxidation processes. Elsevier Journal of Hazardous Materials, 137(1), 178–184.
  • 13. Davarnejad R., Sahraei A. 2015. Industrial wastewater treatment using an electrochemical technique: an optimized process. Desalination and Water Treatment, 57(21), 9622–9634.
  • 14. Davarnejad, R., Pirhadi, M., Mohammadi, M., Arpanahzadeh, S. 2015. Numerical Analysis of Petroleum Refinery Wastewater Treatment Using Electro-Fenton Process. Chem. Prod. Process Model, 10(1), 11–16.
  • 15. Diya’uddeen B.H., Daud W.M.A.W., Abdul Aziz A.R. 2011. Treatment technologies for petroleum refinery effluents: a review. Process Safety and Environmental Protection, 89(2), 95–105.
  • 16. El-Ghenymy A., Garcia-Segura S., Rodríguez R.M., Brillas E., El Begrani M.S., Abdelouahid B.A. 2012. Optimization of the electro-Fenton and solar photoelectron - Fenton treatments of sulfanilic acid solutions using a pre-pilot flow plant by response surface methodology. J. Hazard. Mater., 221–222, 288–297.
  • 17. El-Naas M.H., Al-Zuhair S., Alhaija M.A. 2010. Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. Journal of Hazardous Materials, 173(1–3), 750–757.
  • 18. Fathinejad Jirandehi H., Adimi M., Mohebbizadeh M. 2015. Petrochemical wastewater treatment by modified electro-Fenton process with nano iron particles. Journal of Particle Science & Technology, 1(4), 215–223.
  • 19. George S.J., Gandhimathi R., Nidheesh P.V., Ramesh S.T. 2013a. Electro-Fenton method oxidation of salicylic acid in aqueous solution with graphite electrodes. Environ. Eng. Sci., 30, 750–756.
  • 20. George S.J., Gandhimathi R., Nidheesh P.V., Ramesh S.T. 2013b. Electro-Fenton oxidation of salicylic acid from aqueous solution: batch studies and degradation pathway, Clean Soil Air Water, http://dx.doi.org/10.1002/clen.201300453.
  • 21. Ghoneim M.M., El-Desoky H.S., Zidan N.M. 2011. Electro-Fenton oxidation of Sunset Yellow FCF azodye in aqueous solutions, Desalination 274, 22–30.
  • 22. Giri A.S., Golder A.K. 2014. Fenton, photo-Fenton, H2O2 photolysis, and TiO2 photocatalysisfor Dipyrone oxidation: Drug Removal, mineralization, biodegradability, and degradation mechanism. Industrial & Engineering Chemistry Research, 53(4), 1351–1358.
  • 23. Huanqi H., Zhi Z. 2017. Electro-Fenton process for water and wastewater treatment. Critical Reviews in Environmental Science and Technology, 47(21), 1–32.
  • 24. IPIECA (International Petroleum Industry Environmental Conservation Association) (2010) Petroleum refining water/wastewater use and management. Operations Best Practice Series, London, UK.
  • 25. Manivasagan, V., Basha C.A., Kannadasan T., Saranya K. 2012. Degradation of Parachlorophenol by Electro-Fenton and Photo-Fenton Process Using Batch Recirculation Reactor. Portugaliae Electrochimica Acta, 30, 385–393.
  • 26. Mirshahghassemi S., Aminzadeh B., Torabian A., Afshinnia K. 2016. Optimizing electrocoagulation and electro-Fenton process for treating car wash wastewater Environmental Health Engineering and Management, 4, 37–43.
  • 27. Mrayyan B., Battikhi M.N. 2005. Biodegradation of Total Organic Carbons (TOC) in Jordanian Petroleum Sludge. J. Hazard Mater., 120(1–3), 127–134.
  • 28. Nidheesh P.V., Gandhimathi R. 2013. Comparative removal of rhodamine b from aqueous solution by electro Fenton and electro Fenton like processes, Clean–Soil Air Water. http://dx.doi.org/10.1002/clen.201300093
  • 29. Nidheesh P.V., Gandhimathi R. 2014b. Removal of Rhodamine B from aqueous solution using graphite–graphite electro-Fenton system. Desalination Water Treat., 52, 1872–1877.
  • 30. Nidheesh P.V., Gandhimathi R. 2012. Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination, 299, 1–15.
  • 31. Nidheesh P.V., Gandhimathi R., Velmathi S., Sanjini N.S. 2014c. Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution, RSC Adv. 4, 5698–5708.
  • 32. Nidheesh P.V., Gandhimathi R. 2015. Textile Wastewater Treatment by Electro-Fenton Process in Batch and Continuous Modes. Journal of Hazardous, Toxic, and Radioactive Waste, 19(3), 04014038.
  • 33. Nidheesh, P.V., Gandhimathi R., Sanjini N.S. 2014a. NaHCO3 enhanced Rhodamine B removal from aqueous solution by graphite–graphite electro Fenton system. Separation and Purification Technology, 132, 568–576.
  • 34. Özcan A., Şahin Y., Koparal A.S., Oturan M.A. 2008. Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J. Electroanal Chem., 616(1–2), 71–78.
  • 35. Paz D.S., Foletto E.L., Bertuol D.A., Jahn S.L., Collazzo G.C., Silva S.S., Nascimento C.A. O. 2013. CuO/ZnO coupled oxide films obtained by the electro-deposition technique and its photocalyticactivity in phenol degradation under solar irradiation. Water Science and Technology, 68(5), 1031–1036.
  • 36. Peralta-Hernández J.M., Meas-Vong Y., Rodríguez F.J., Chapman T.W., Maldonado M.I., Godínez L.A. 2006. In situ electrochemical and photo-electrochemical generation of the Fenton reagent: a potentially important new water treatment technology, Water Res. 40, 1754–1762.
  • 37. Pletcher D., Walsh F.C. 1990. Industrial electrochemistry. Chapman & Hall, London.
  • 38. Pozzo A.D., L.D.P., Merli C., Petrucci E. 2005. J. Appl Electrochem. 35, 413–419.
  • 39. Sahraei A. 2013. Wastewater treatment obtained from the Imam Khomein’s refinery using electro-Fenton technique. MSc Thesis: Arak University.
  • 40. Segurola J., Allen N.S., Edge M., Mahon A.M. 1999. Prog. Org. Coat., 37, 23.
  • 41. Silva S.S., Chiavone-Filho O., Neto E.L.B., Foletto E.L. 2015. Oil removal from produced water by conjugation of flotation and photo-Fenton processes. Journal of Environmental Management, 147, 257–263.
  • 42. Souza R.B.A., Ruotolo L.A.M. 2013. Electrochemical treatment of oil refinery effluent using borondoped diamond anodes. Journal of Environmental Chemical Engineering, 1(3), 544–551.
  • 43. Wang A., Qu J., Ru J., Liu H., Ge J. 2005. Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode Dyes Pigm., 65(3), 227–233.
  • 44. Wang C.T., Hu J.L., Chou W.L., Kuo Y.M. 2008. Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. J. Hazard. Mater., 152, 601–606.
  • 45. Wang C., Chou W., Chung M., Kuo Y. 2010. COD removal from real dyeing wastewaterby electro-Fenton technology using an activated carbon fiber cathode. Desalination, 253,129–134.
  • 46. WBG (World Bank Group). 1999. Pollution Prevention and Abatement Handbook: Toward Cleaner Production, Washington, D.C., USA.
  • 47. Yan L., Wang Y., Li J., Ma H., Liu H., Li T., Zhang Y. 2014. Comparative study of different electrochemical methods for petroleum refinery wastewater treatment. Desalination, 341, 87–93.
  • 48. Yang C., Liu H., Luo S., Chen X., He H. 2012. Performance of modified electro-Fenton process for phenol degradation using bipolar graphite electrodes and activated carbon. J. Environ. Eng., 6, 613–619.
  • 49. Zelmanov G., Semiat R. 2008. Phenol oxidation kinetics in water solution using iron(3)-oxide-based nano-catalysts. Water Research, 42(14), 3848–3856.
  • 50. Zhang J., Shao M.H., Dong H. 2014. Degradation of Oil Pollution in Seawater by Bipolar Electro-Fenton Process. Polish Journal of Environmental Studies, 23, 933–941.
  • 51. Zhang Li Z., Ai L. 2009. Design of a neutral electro-Fenton system with Fe@Fe2O3/-ACF composite cathode for wastewater treatment, J. Hazard. Mater. 164, 18–25.
  • 52. Zhao Q., Kennedy J.F., Wang X.,Yuan X., Zhao B., Peng Y., Huang Y. 2011. Optimization of ultrasonic circulating extraction of polysaccharides from Asparagus officinal is using response surface methodology. Int. J. Biological Macromolecules, 49(2), 181–187.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00978900-189e-48e0-8c1d-e8b2ae06324e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.