Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the results of experimental research focused on wave energy harvesting and its conversion to power Internet of Things (IoT) devices. The harvesting and conversion process was performed using a wave energy converter (WEC) consisting of a lead zirconate titanate piezoelectric ceramic perovskite material and a prototype power electronic circuit. The designed WEC was considered as a power supply for an end node device (END) of an IoT network. The END consisted of a long-range radio module and an electronic paper display. A set of physical experiments were carried out, and the results confirmed that an energy surplus was supplied by WEC compared to the energy consumed by the END. Hence, the proposed scheme was experimentally validated as a convenient solution that could enable the autonomous operation of an IoT device. The use case presented here for the proposed WEC was analysed for selected sea areas on the basis of wave statistics. The novelty of this paper arises from an investigation that confirms that WECs can significantly contribute to the development of wireless and mobile IoT communication powered by freely available sea wave energy.
Czasopismo
Rocznik
Tom
Strony
142--152
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Department of Electric Drives and Energy Conversion, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Poland
autor
- Department of Electric Drives and Energy Conversion, Faculty of Electrical and Control Engineering, Gdańsk University of Technology, Poland
Bibliografia
- 1. P. Girard and S. Girard, Brevet D’invention De Quinze Ans, “Pour divers moyens d’employer les vagues de la mer, comme moteurs,” a patent for invention, Paris 1799, 349.
- 2. T. Aderinto and H. Li, “Ocean wave energy converters: Status and challenges,” Energies, vol. 11, p. 1250, 2018. doi:/10.3390/en11051250.
- 3. A. Clément et al., “Wave energy in Europe: Current status and perspectives,” Renewable and Sustainable Energy Reviews, vol. 6, p. 5, 2002. doi:10.1016/S1364-0321(02)00009-6.
- 4. M. S. Lagoun, A. Benalia, and M. E. H. Benbouzid, “Ocean wave converters: State of the art and current status,” Proceedings of the 2010 IEEE ENERGYCON, Manama (Bahraïn), December 2010, pp. 636–642.
- 5. A. Maria-Arenas et al., “Control strategies applied to wave energy converters: State of the art,” Energies, vol. 12, p. 3115, 2019. doi:10.3390/en12163115.
- 6. M. A. Jusoh et al., “Hydraulic power take-off concepts for wave energy conversion system: A review,” Energies, vol. 12, p. 4510, 2019. doi:10.3390/en12234510.
- 7. S. Chiba et al., “Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators,” Applied Energy, vol. 104, pp. 497–502, 2013. doi:10.1016/j.apenergy.2012.10.052.
- 8. X. Chou et al., “All-in-one filler-elastomer-based highperformance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring,” Nano Energy, vol. 53, pp. 550–558, 2018. doi:10.1016/j.nanoen.2018.09.006.
- 9. M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265, pp. 94–104, 1991.
- 10. R. Qiu and Z. Zhang, “Design of enterprise Web servers in support of instant information retrievals,” IEEE RFID Virtual Journal, pp. 2661-2666, vol. 3, 2003. doi:10.1109/ ICSMC.2003.1244286.
- 11. M. H. Miraz et al., “A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT),” IEEE Spectrum, pp. 219–224, 2015. doi:10.1109/ ITechA.2015.7317398.
- 12. T. Hiramoto et al., “Ultra-low power and ultra-low voltage devices and circuits for IoT applications,” IEEE Silicon Nanoelectronics Workshop (SNW), pp. 146–147, 2016. doi:10.1109/SNW.2016.7578025.
- 13. S. K. Vishwakarma et al., “Smart energy efficient home automation system using IoT,” IEEE 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), pp. 1–4, 2019. doi:10.1109/ IoT-SIU.2019.8777607.
- 14. K. Wasa, et al., “Thin films of PZT-based ternary perovskite compounds for MEMS,” IEEE Ultrasonics Symposium, pp. 213–216, 2008. doi:10.1109/ULTSYM.2008.0052.
- 15. J. Dudziak, “Dynamika środowiska,” in Teoria okrętu, Wydawnictwo Morskie, Gdańsk, Poland, 1988, p. 338 (in Polish).
- 16. A. Iafrati et al., “Laboratory modelling of waves: Regular, irregular and extreme events,” in Proceedings of the Specialist Committee on Modeling of Environmental Conditions, 28th ITTC, Wuxi, China, 17–22 September 2017, p. 8.
- 17. C. T. Stansberg et al., “Final report and recommendations to the 23rd ITTC,” in Proceedings of the 23rd ITTC, Volume II, Specialist Committee on Waves, Venice, Italy, 8–14 September 2002, p. 517, pp. 544–551.
- 18. G. G. Cox et al., “Report of the Seakeeping Committee,” in Proceedings of the 17th ITTC, Volume I, Seakeeping Committee, 17th ITTC, Goteborg, Sweden, 8–15 September 1984, p. 482.
- 19. M. Drzewiecki and J. Guziński, “Fuzzy control of waves generation in a towing tank,” Energies, vol. 13, p. 2049, 2020. doi:10.3390/en13082049.
- 20. APC International, Ltd., “Modes of vibration for common piezoelectric ceramic shapes,” in Piezoelectric Ceramics: Principles and Applications, APC International, Ltd.: Mackeyville, PA, USA, 2011, Table 1.8.
- 21. Pervasive Displays 2.71” E-ink display. Accessed: Feb. 11, 2023 [Online]. Available: https://www.pervasivedisplays. com/product/2-71-e-ink-display/.
- 22. STM32WL55JC Sub-GHz Wireless Microcontrollers. Dualcore Arm Cortex-M4/M0+ @48 MHz with 256 Kbytes of Flash memory, 64 Kbytes of SRAM. LoRa, (G)FSK, (G)MSK, BPSK modulations. AES 256-bit. Multiprotocol Systemon-Chip. Accessed: Feb. 11, 2023). [Online] Available: https://www.st.com/en/microcontrollers-microprocessors/ stm32wl55jc.html.
- 23. Pervasive Displays, “How low-power e-paper displays enhance IoT applications.” Accessed Feb. 11, 2023. [Online]. Available: https://www.pervasivedisplays.com/ how-e-paper-works/.
- 24. The Things Network, “What are LoRa and LoRaWAN?” Accessed Feb. 11, 2023. [Online]. Available: https://www. thethingsnetwork.org/docs/lorawan/what-is-lorawan/.
- 25. N. Jovalekic et al., “Experimental study of LoRa transmission over seawater,” Sensors, vol. 18, p. 2853, 2018. doi: 10.3390/ s18092853.
- 26. The Things Network Global Team, “LoRaWAN® distance world record broken, twice.” Accessed Feb. 11, 2023. [Online]. Available: https://www.thethingsnetwork.org/ article/lorawan-world-record-broken-twice-in-singleexperiment-1.
- 27. “MPICOSYS Low Power Innovators Invent, Design & Produce For You.” Accessed Feb. 11, 2023. [Online]. Available: https://www.mpicosys.com/.
- 28. L. H. Holthuijsen, Waves in Oceanic and Coastal Waters. Cambridge: Cambridge University Press, 2007, p. 4.
- 29. Copernicus Marine Service Information, “Global Ocean Waves Analysis and Forecast,” doi:10.48670/ moi-00017. Accessed Feb. 19, 2023. [Online]. Available: https://data.marine.copernicus.eu/product/ GLOBAL_ANALYSISFORECAST_WAV_001_027/ description.
- 30. P. Gualeni et al., “Confidence intervals for significant wave height and modal period,” In Recommended Procedures and Guidelines, Specialist Committee on Stability in Waves of the 28th ITTC, Wuxi, China, 17–22 September 2017, p. 4.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0096c3eb-f758-4a4f-bca1-5c4c4f721036