Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Gungi grown material ‒ the future of architecture and building industry (review)
Języki publikacji
Abstrakty
W artykule przedstawiono wyniki badań nad wykorzystaniem grzybni do wytwarzania materiałów budowlanych o zrównoważonych cyklach życia. Omówiono najczęściej używane grzyby, sposoby ich hodowli i rodzaje otrzymywanych materiałów. Przeanalizowano pozytywny wpływ materiałów opartych na grzybni na środowisko naturalne. Przedstawiono wybrane rozwiązania zastosowania architektoniczne i projektowe związane z zastosowaniem kompozytów opartych na grzybni (ang. mycelium-based composites, MBCs). Przeprowadzone analizy przypadków wskazują, że biokompozyty z grzybni mogą odegrać istotną rolę w transformacji sektora budowlanego oraz architektury, wpisując się w ideę zrównoważonego rozwoju. Wskazuje się, że wykorzystanie materiałów budowlanych z grzybni w architekturze i budownictwie może przyczynić się do redukcji emisji gazów cieplarnianych powstających w czasie ich produkcji, zmniejszenia ilości odpadów oraz promowania innowacyjnych, przyjaznych środowisku technologii.
The article presents research findings on the use of mycelium for producing building materials with sustainable life cycles. It discusses the most commonly used fungi, cultivation methods, and types of materials obtained. The positive environmental impact of mycelium-based materials is analyzed, along with selected architectural and design applications of mycelium-based composites (MBCs). Case studies indicate that mycelium biocomposites can play a significant role in transforming the construction and architecture sectors in line with the principles of sustainable development. It is suggested that the use of mycelium-based building materials in architecture and construction may contribute to reducing CO₂ emissions, minimizing waste, and promoting innovative, eco-friendly technologies.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
6--13
Opis fizyczny
Bibliogr. 56 poz., il., tab.
Twórcy
autor
- Wydział Technologii i Inżynierii Chemicznej, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
autor
- Wydział Architektury, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
autor
- Wydział Architektury, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
autor
- Wydział Architektury, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
Bibliografia
- [1] Mba, E.J., Okeke, F.O., Igwe, A.E., Ozigbo, C.A., Oforji, P.I., Ozigbo, I.W. (2024), Evolving trends and challenges in sustainable architectural design; a practice perspective, „Heliyon” 10, 20, e39400.DOI: https://doi.org/10.1016/j.heliyon.2024.e39400.
- [2] Labaran, Y.H., Mathur, V.S., Muhammad, S.U., Musa, A.A. (2022), Carbon footprint management: A review of construction industry, „Cleaner Engineering and Technology”, 9,100531,DOI:https://doi.org/10.1016/j.clet.2022.100531.
- [3] Chen, L., Zhang, Y., Chen, Z., Dong, Y., Jiang, Y., Hua, J., Liu, Y., Osman, A.I., Farghali, M., Huang, L., Rooney D.W., Yap P.W. (2024), Biomaterials technology and policies in the building sector: a review, „Environmental Chemistry Letter” 22, s. 715-750, DOI: https://doi.org/10.1007/s10311-023-01689-w.
- [4] Cheek, M., Lughadha, N.E, Kirk P., Lindon H., Carretero J., Looney B., Douglas B., Haelewaters D. (2020), New scientific discoveries: Plants and fungi, „Plants, People, Planet” 2,5, pp. 371-388., DOI: 10.1002/ppp3.10148.
- [5] Himanshu, Y.N., Ibrahim, S., Shenoy, R.P. (2022), Fungi: Are they plants or animals?, „Manipal Journal of Medical Science”, 6,1, pp. 3-5.
- [6] Corbu, V.M., Gheorghe-Barbu, I., Dumbravă, A.Ș., Vrâncianu, C.O., Șesan, T.E. (2022), Current Insights in Fungal Importance ‒ A Comprehensive Review, „Microorganisms” 2023, 11, 1384. DOI: https://doi.org/10.3390/microorganisms11061384.
- [7] Ruiz-Herrera, J. (1991), Fungal cell wall: structure, synthesis, and assembly. CRC press.
- [8] Islam, M.R., Tudryn, G., Bucinell, R., Schadler L., Picu R.C. (2017), Morphology and mechanics of fungal mycelium, „Scientific Reports” 7, 13070. DOI: https://doi.org/10.1038/s41598-017-13295-2.
- [9] Alaneme, K.K., Anaele, J.U., Oke, T.M., Kareem, S.A., Adediran, M., Ajibuwa, O.A., Anabaranze, Y.O. (2023), Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications, „Alexandria Engineering Journal” 83, pp. 234-250. DOI: https://doi.org/10.1016/j.aej.2023.10.012.
- [10] Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassia A. (2017), Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties, „Scientific Reports” 7,1, 41292. DOI: https://doi.org/10.1038/srep41292.
- [11] Krijgsheld, P., Wösten H.A.B. (2019), Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites, „Materials & Design” 161, pp. 64-71, 10.1016/j.matdes.2018.11.027.
- [12] Jones M. Murali G.G., Laurin F., Robinson p., Bismarck A. (2022), Functional flexibility: The potential of morphing composites, „Composites Science and Technology” 230(1):109792. DOI: 10.1016/j.compscitech.2022.109792.
- [13] Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., Grobman, Y.J. (2020), Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis, „Journal of Cleaner Production”, 246, 119037. DOI: https://doi.org/10.1016/j.jclepro.2019.119037.
- [14] Tomoko, K., Lankinen, P., Hietala, Mikkonen, S., Mikkonen, K.S. (2022), Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state, „Composites Part A: Ap-plied Science and Manufacturing” 152: 106688,152,106688. DOI: https://doi.org/10.1016/j.compositesa.2021.106688.
- [15] Gumińska B., Wojewoda, W. (1985), Grzyby i ich oznaczanie, Warszawa: PWRiL.
- [16] Madusanka, C., Udayanga, D., Nilmini, R., Rajapaksha, S., Hewawasam, C., Manamgoda, D., Vasco-Correa J. (2024), A review of recent advances in fungal mycelium based composites, „Discovered Material” 4, 13, DOI: https://doi.org/10.1007/s43939-024-00084-8.
- [17] Chang, S-T., Miles, P. (2004), Pleurotus – A Mushroom of Broad Adaptability, CRC Press.
- [18] Zmitrovich I.V., Malysheva V.F. (2013), Towards a phylogeny of Trametes alliance (Basidiomycota, Polyporales), „Mikologiya i fitopatologiya” 47, 6, pp. 358-380. DOI:http://media.wix.com/ugd/b65817_d1162add57d74fe08e46f728018208ac.pdf.
- [19] Jones, M., Bhat, T., Huynh, T., Kandare, E., Yuen, R., Wang, C.H., John, S. (2018), Waste-derived low-cost mycelium composite construction materials with improved fire safety, „Fire Materials” 2;42, pp. 816-25.https://doi.org/10.1002/fam.2637.
- [20] Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S. (2020), Engineered mycelium composite construction materials from fungal biorefineries: A critical review, „Materials & Design” 187, 108397. DOI: https://doi.org/10.1016/j.matdes.2019.108397.
- [21] Alemu, D., Tafesse M., Mondal A.L. (2022), Mycelium-Based Composite: The Future Sustainable Biomaterial, „International Journal of Biomaterials” 8401528. DOI:https://doi.org/10.1155/2022/8401528.
- [22] Dias, P.P.; Jayasinghe, L.B.; Waldmann, D. (2021), Investigation of Mycelium-Miscanthus Composites as Building Insulation Material, „Results in Material”, 10, 100189. DOI: https://doi.org/10.1016/j.rinma.2021.100189.
- [23] Jones, M., Huynh, T., Dekiwadia, C., Daver, F., John S. (2017), Mycelium composites: a review of engineering characteristics and growth kinetics, „Journal of Bionanoscience” 11, pp.241-257. DOI: 10.1166/jbns.2017.1440.
- [24] Yang, Z.J. Asce, M., Zhang, F., Still, B., Asce, S.M., White, M., Amstislavski P. (2017), Physical and mechanical properties of fungal mycelium-based biofoam, „Journal of Materials in Civil Engineering” 29, pp.1-9. DOI: 10.1061/(ASCE)MT.1943-5533.0001866.
- [25] Aiduang, W., Kumla, J., Srinuanpan, S., Thamjaree, W., Lumyong, S., Suwannarach, N. (2022), Mechanical, Physical, and Chemical Properties of Mycelium-Based Composites Produced from Various Lignocellulosic Residues and Fungal Species, „Journal of Fungi” 25;8(11):1125. DOI: https://doi.org/10.3390/jof8111125.
- [26] Teeraphantuvat, T., Jatuwong, K., Jinanukul, P., Thamjaree, W., Lumyong, S., Aiduang, W. (2024), Improving the Physical and Mechanical Properties of Mycelium-Based Green Composites Using Paper Waste, „Polymers” 16, 262. DOI: https://doi.org/10.3390/polym16020262.
- [27] Raslan, D., Elsacker, E., Debnath, K.B., Dade-Robertson, M. (2025), The role of surface interventions in bio-welding mycelium based-composites, „Sustainable Materials and Technologies” 44, e01326. DOI: https://doi.org/10.1016/j.susmat.2025.e01326.
- [28] Appels, F.V.W., Camere, S., Montalti, M.,; Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wösten, H.A.B. (2019), Fabrication Factors Influencing Mechanical, Moisture- and Water-Related Properties of Mycelium-Based Composites, „Material and Designs” 161, pp. 64-71. DOI:https://doi.org/10.1016/j.matdes.2018.11.027.
- [29] Saez, D., Grizmann, D., Trautz, M., Werner, A. (2022), Exploring the Binding Capacity of mycelium and wood-based composites for use in construction, „Biomimetics” 7, 78. DOI: https://doi.org/10.3390/biomimetics7020078.
- [30] Pelletier, M.G., Holt, G.A., Wanjura, J.D., Greetham, L., McIntyre, G., Bayer, E., Kaplan-Bie J. (2019), Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative, „Industrial Crops and Products” 139, pp. 926-6690. DOI: https://doi.org/10.1016/j.indcrop.2019.111533.
- [31] Ongpeng, J.M.C., Inciong, E., Sendo, V., Soliman, C., Siggaoat, A. (2020), Using Waste in Producing Bio-Composite Mycelium Bricks, „Applied Science” 10, 5303. DOI: https://doi.org/10.3390/app10155303.
- [32] Xing, Y., Brewer, M., El-Gharabawy, H., Griffith G., Jones P. (2018), Growing and testing mycelium bricks as building insulation materials, „IOP Conference Series: Earth Environmental Science” 21, 2. DOI: 10.1088/1755-1315/121/2/022032.
- [33] Wang, Y., Hausner, G., Rout, P.R., Yuan, Q. (2025), Investigation of fungal mycelium-bound bio-foams from agricul-tural wastes as sustainable and eco-conscious packaging innovations, „Journal of Cleaner Production” 501, 145206. DOI: https://doi.org/10.1016/j.jclepro.2025.145206.
- [34] Sun, W., Tajvidi, M., Howell, C., Hunt, C.G. (2022), Insight into mycelium-lignocellulosic bio-composites: Essential factors and properties, „Composites Part A: Applied Science and Manufacturing” 161, 107125. DOI: https://doi.org/10.1016/j.compositesa.2022.107125.
- [35] Sydor, M., Bonenberg, A., Doczekalska, B., Cofta, G. (2022), Mycelium-Based Composites in Art, Architecture, and Interior Design: A Review, „Polymers” 14, 145. DOI: https://doi.org/10.3390/polym14010145.
- [36] www.ecovative.com [data dostępu: 12.08.2025].
- [37] https://mogu.bio/ [data dostępu: 12.08.2025].
- [38] https://www.mycotex.nl/[data dostępu: 12.08.2025].
- [39] https://www.mycoworks.com/[data dostępu: 12.08.2025].
- [40] https://www.mycostories.com/post/biohm-sustainable-eco-friendly-construction-materials-derived-from-mycelium [data dostępu: 12.08.2025].
- [41] Madusanka, C., Udayanga, D., Nilmini, R., Rajapaksha, S., Hewawasam, C., Manamgoda, D., Vasco-Correa J. (2024), A review of recent advances in fungal mycelium based composites, „Discovered Material” 4, 13. DOI: https://doi.org/10.1007/s43939-024-00084-8.
- [42] Kumar, P., Kapoor, A., Pal, D.B., Raghunathan, M. (2025), Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties [in:] Pal, D.B., Bansal, S.L. (eds) Fungal Waste Biomass Management for Energy, Environment and Value-Added Products. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-82599-6_9.
- [43] Volk, R., Schröter, M., Saeidi, N., Steffl, S., Javadian, A., Hebel, D.E., Schultmann, F. (2024), Life cycle assessment of mycelium-based composite materials, „Resources, Conservation and Recycling” 205, 107579. DOI: https://doi.org/10.1016/j.resconrec.2024.107579.
- [44] Luksta, I., Bohvalovs, G., Bazbauers, G., Spalvins, K., Blumberga, A., Blumberga, D. (2021), Production of Renewable Insulation Material – new Business Model of Bioeconomy for Clean Energy Transition, „Environmental and Climate Technologies” 25, pp.1061-1074.
- [45] Livne, A., Wösten, H.A.B., Pearlmutter D., Gal E. (2022), Fungal Mycelium Bio-Composite Acts as a CO2-Sink Building Material with Low Embodied Energy, „ACS Sustainable Chemistry & Engineering” 10, 37, pp. 12099-12106. DOI: https://doi.org/10.1021/acssuschemeng.2c01314.
- [46] O’Brien, P.L., Sauer, T.J., Archontoulis, S., Karlen, D.L., Laird, D. (2020), Corn stover harvest reduces soil CO2 fluxes but increases overall C losses, „GCB Bioenergy” 12, pp. 894-909. DOI: 10.1111/gcbb.12742.
- [47] Alaux, N., Vašatko, H., Maierhofer, D. et al. Ruschi M., Saade M., Stavric M., Passer A. (2024), Environmental potential of fungal insulation: a prospective life cycle assessment of mycelium-based composites, „Int J Life Cycle Assess” 29, pp. 255-272 DOI:https://doi.org/10.1007/s11367-023-02243-0.
- [48] Bagheriehnajjar, G., Yousefpour, H. & Rahimnejad, M. (2024), Environmental impacts of mycelium-based bio-composite construction materials, „Int. J. Environ. Sci. Technol.” 21, pp. 5437-5458. DOI:https://doi.org/10.1007/s13762-023-05447-x.
- [49] Anand, A., Raghuvanshi, S. & Gupta, S. (2020), Trends in Carbon Dioxide (CO2) Fixation by Microbial Cultivations, „Curr Sustainable Renewable Energy Rep” 7, pp. 40-47. DOI.https://doi.org/10.1007/s40518-020-00149-1.
- [50] Soh, E., Teoh, J.H., Leong, B., Xing, T., & Le Ferrand, H. (2023), 3D printing of mycelium engineered living materials using a waste-based ink and non-sterile conditions, „Materials & Design” 236,2023, 112481, DOI: https://doi.org/10.1016/j.matdes.2023.112481.
- [51] Gavriilidis, E.T., Voutetaki, M.E., Giouzepas, D.G. (2024), Effective Structural Parametric Form in Architecture Using Mycelium Bio-Composites, „Architecture” 4,3, pp. 717-729. DOI: https://doi.org/10.3390/architecture4030037.
- [52] Heisel, F., Schlesier, K., Lee, J., Rippmann, M., Saeidi, N., Javadian, A., Nugroho, A.R., Hebel, D., Block, P. (2017), Design of a Load-Bearing Mycelium Structure through Informed Structural Engineering, The MycoTree at the 2017 Seoul Biennale of Architecture and Urbanism. In Proceedings of the World Congress on Sustainable Technologies (WCST-2017), Cambridge, UK, 4-6 November 2017.
- [53] Leboucq, P., De Man, L., Klarenbeek, E. [online] https://thegrowingpavilion.com/ [data dostępu: 3.04.202]).
- [54] Pawilon Przyszłości w Łazienkach Królewskich, Sztuka Architektury [data dostępu: 19.08.2025].
- [55] https://smakinaboczniaki.pl/rozkoszt-nasze-boczniaki-rozowe-w-innowacyjnej-instalacji-na-placu-pieciu-rogow/ [data dostępu: 24.08.2025].
- [56] Rossi, A., Javadian, A., Acosta, I., Özdemir, E., Nolte, N., Saeidi, N., Dwan, A., Ren, S., Vries, L., Hebel, D., Wurm, J., Evers-man, P. (2022), Wood-Mycelium Composites for CO2-Neutral, Circular Interior Construction and Fittings. In: Berlin D-A-CH conference: Built Environment within Planetary Boundaries (SBE Berlin 2022). IOP Publishing.
Uwagi
Artykuł umieszczony w części "Builder Science"
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0093af53-b982-4eaf-8251-5555c7f5a181
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.