PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring vital functions of A-375 melanoma cell cultures via thin-film nickel capacitors

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article deals in the constantly developing branch of microelectronic devices used in various fields of medicine, i.e. diagnostics and treatment of previously incurable human diseases. A method for assessing and monitoring the vital functions of living cells by measuring cellular impedance in real-time using the ECIS® system and a commercial culture substrate is presented. The goal was to develop a substrate significantly less expensive than a commercial substrate that would be suitable for multiple uses and compatible with the ECIS® measurement station. Moreover, thanks to the use of a material with electrochemical properties other than the biocompatible material (gold or platinum) it is possible to observe the cells behavior with regard to the toxic agent. For this purpose, a culture substrate with nickel comb capacitors was used. To make the electrodes, a thin metal layer was sputtered on polycarbonate plates in the magnetron sputtering process. Prior to the next stages, technological masks were designed so as to fit in the ECIS® measuring station. Subsequently, the microelectronic processes of photolithography and etching the metal layer were performed. Finally, the wells were glued onto the culture medium with a biocompatible adhesive. The completed substrates were transferred to the Department of Human Physiology, Medical University of Lublin, for the culture test on A-375 human melanoma cells. The results of the experiment determined the usefulness of the device for monitoring cell culture vital functions by means of impedance measurement.
Słowa kluczowe
Rocznik
Strony
10--14
Opis fizyczny
Biblogr. 21 poz., rys., zdj.
Twórcy
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Medical University in Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
  • Medical University in Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
  • Medical University in Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
Bibliografia
  • [1] https://biophysic.com [access: 12.12.2020]
  • [2] Rack H.J., Qazi J.I.: Titanium alloys for biomedical applications. Materials Science and Engineering C 26 (2006) 1269–1277.
  • [3] Chalklen T., Wuinhshen J., et al.: Biosensors Based on Mecha¬nical and Electrical Detection Techniques. Sensors 20 (2020) 5606.
  • [4] Xu Y., Xie X., Duan Y., Wang L., Cheng Z., Cheng J.: A Review of Impedance Measurements of Whole Cells. Biosensors and Bioelectronics 77 (2016) 824–836.
  • [5] Giaever I., Keese C.R.: A Morphological Biosensor for Mamma¬lian Cells. Nature 366/6455 (1993) 591–592.
  • [6] Voiculescu I., Toda M., Inomata N., Ono T. Li F., Nano and Micro¬sensors for Mammalian Cell Studies. Micromachines 9 (2018) 439.
  • [7] Kociubiński A. et al.: Real-time Monitoring of Cell Cultures with Nickel Comb Capacitors. Informatics, Control, Measurement in Economy and Environmental Protection 2 (2020) 32–35.
  • [8] Caide Xiao, John H.T. Luong: A simple mathematical model for electric cell-substrate impedance sensing with extended applica¬tions. Biosensors and Bioelectronics 25 (2010) 1774-1780.
  • [9] Crowell L., Yakisich J., et al.: Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells. Micromachines 11 (2020) 832.
  • [10] Arias L.R., Carla A.P., Yang L.: Real-Time Electrical Impedance Detection of Cellular Activities of Oral Cancer Cells. Biosensors and Bioelectronics 25(10) (2010) 2225–2231.
  • [11] Scholten K., Meng E.: Materials for Microfabricated Implantable Devices: A Review. Lab on a Chip 15(22) (2015) 4256–4272.
  • [12] Serek A., Budniok A.: Otrzymywanie i własności elektrolitycz¬nych warstw kompozytowych na osnowie niklu zawierających tytan. Wyd. Uniwersytetu Śląskiego, Instytut Fizyki i Chemii Metali 3 (2002) 63–67.
  • [13] Bhattacharyya P., Basu P.K., Mondal B., Saha H.: A low po¬wer MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane. Microelectronics Reliability 48 (2008) 1772–1779.
  • [14] Kagan M. et al.: CellTracks: Cell Analysis System for Rare Cell Detection. Proceedings SPIE, Clinical Diagnostic Systems: Technologies and Instrumentation 4625 (2002) 20–28.
  • [15] https://www.lgcstandards-atcc.org/products/all/CCL1. aspx#culturemethod [access: 13.12.2020]
  • [16] Vogler E.A.: Thermodynamics of short-term cell adhesion in vitro. Biophysical Journal 53 (1988) 759–769.
  • [17] Parak W.J. et al.: Electrically excitable normal rat kidney fibro¬blasts: A new model for cell–semiconductor hybrids. Biophysical Journal 76 (1999) 1659–1667.
  • [18] Wegener J., Keese C.R., Giaever I.: Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research 259 (2000) 158–166.
  • [19] Mohanty S.P.: Biosensors: A Survey Report. Citeseer (2001) 1–15.
  • [20] Xiaoqiu H., Nguyen D., Greve D.W., Domach M.M.: Simulation of microelectrode impedance changes due to cell growth. IEEE Sensors Journal 4/5 (2004) 576–583.
  • [21] Coffman F.D., Cohen S.: Impedance measurements in the biomedical Sciences. Analytical Cellular Pathology 35 (2012) 363–374.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0091a2bc-4480-4a99-97cc-c95729f93379
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.