PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Occupant-Based Overview of Microplastics in Indoor Environments in the City of Surabaya, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Airborne microplastics smaller than 5 mm in diameter can be easily inhaled by humans, impacting their health. The human exposure to microplastics can occur in indoor environments, and this study investigated the degree of indoor deposition of microplastics in settled dust. The authors assessed the relationship between the number of occupants/people and the amount of microplastics in their indoor environment by determining the indoor microplastic exposure in two offices, two schools, and two apartments in Surabaya, Indonesia. The settled dust was collected using a vacuum cleaner for 10 minutes on a single weekday and the weekend at each study location. The results show that the amount of microplastics collected at each location during workdays exceeded the amount found on weekends. The two offices sampled were found to have the greatest amounts of microplastics (334 particles on a weekday, 242 particles on a weekend; and 351 particles on a weekday, 252 particles on a weekend), and the two apartments produced the least amounts of microplastics (133 particles on a weekday, 127 particles on a weekend; and 108 particles on a weekday, 95 particles on a weekend). The dominant microplastic shape was that of fiber, and the dominant size range of the microplastics collected was 3000–3500 µm. The amount of indoor microplastics is influenced by the activities and the number of occupants/people in the space. The exposure levels indicated here will contribute to the formulation of the environmental health policy recommendations.
Słowa kluczowe
Rocznik
Strony
236--242
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia
  • Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI)
  • Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia
autor
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Indonesia
  • Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI)
Bibliografia
  • 1. Andrady, A.L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605.
  • 2. BPS-Statistics Of Surabaya Municipality. 2020. Surabaya Municipality In Figures.
  • 3. Browne, M.A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. 2011. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environmental Science and Technology, 45(21), 9175–9179.
  • 4. Bureau, I. 2007. WO 2007/079027 A2 (81). 2007 (July).
  • 5. Carson, H.S., Nerheim, M.S., Carroll, K.A., & Eriksen, M. 2013. The plastic-associated microorganisms of the North Pacific Gyre. Marine Pollution Bulletin, 75(1–2), 126–132.
  • 6. Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S. 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol, 47, 6646–6655.
  • 7. Davison, P., & Asch, R.G. 2011. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Marine Ecology Progress Series, 432, 173–180.
  • 8. Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. 2017. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458.
  • 9. Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. 2016. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?. Marine Pollution Bulletin, 104(1–2), 290–293.
  • 10. Eerkes-Medrano, D., Thompson, R.C., & Aldridge, D.C. 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63–82.
  • 11. Foekema, E.M., Gruijter, C.D., Mergia, M.T., Franeker, J.A. Van, Murk, A.J., & Koelmans, A.A. 2013. Plastic in North Sea Fish. Environmenrtal Science & Technology, 47, 8818–8824.
  • 12. Fries, E., Dekiff, J.H., Willmeyer, J., Nuelle, M.T., Ebert, M., & Remy, D. 2013. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Sciences: Processes and Impacts, 15(10), 1949–1956.
  • 13. Gall, S.C., & Thompson, R.C. 2015. The impact of debris on marine life. Marine Pollution Bulletin, 92 (1–2), 170–179.
  • 14. Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J., & Tassin, B. 2018. Microplastics in air: Are we breathing it in?. Current Opinion in Environmental Science and Health, 1, 1–5.
  • 15. Henry, B., Laitala, K.., & Klepp, I.G. 2018. Microplastic pollution from textiles: A literature review (Issue 1). www.sifo.no
  • 16. Lam, C.S., Ramanathan, S., Carbery, M., Gray, K., Vanka, K.S., Maurin, C., Bush, R., & Palanisami, T. 2018. A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, and Soil Pollution, 229(11).
  • 17. Liebezeit, G., & Liebezeit, E. 2015. Origin of synthetic particles in honeys. Polish Journal of Food and Nutrition Sciences, 65(2), 143–147
  • 18. Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. 2006. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21 (9), 1613–1624.
  • 19. Macher, J.M. 2001. Review of methods to collect settled dust and isolate culturable microorganisms. Indoor Air, 11(2), 99–110.
  • 20. McCormick, A., Hoellein, T.J., Mason, S.A., Schluep, J., & Kelly, J. J. 2014. Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental Science and Technology, 48(20), 11863–11871.
  • 21. Nuelle, M.T., Dekiff, J.H., Remy, D., & Fries, E. 2014. A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161–169.
  • 22. Pauly, J.L., Stegmeier, J., Cheney, T., Zhang, P. J., Allaart, A., & Mayer, G. 1998. Inhaled Cellulosic and Plastic Fibers Found in Human Lung Tissue. Cancer Epidemiology, Biomarkers Prev, 7, 419–428.
  • 23. Sundt, P., Schultze, P.E, Frode. S. 2014. Sources of microplasticpollution to the marine environment. Mepex, Norwegian Environment Agency, 1–108.
  • 24. Verschoor, A., De Poorter, L., Dröge, R., Kuenen, J., & De Valk, E. 2016. Emission of microplastics and potential mitigation measures (cleaning agents, paints and tyre wear). 76.
  • 25. Webster, T.F., Harrad, S., Millette, J.R., Holbrook, R.D., Davis, J.M., Stapleton, H.M., Allen, J. G., McClean, M.D., Ibarra, C., Abdallah, M.A.E., & Covaci, A. 2009. Identifying transfer mechanisms and sources of decabromodiphenyl ether (BDE 209) in indoor environments using environmental forensic microscopy. Environmental Science and Technology, 43(9), 3067–3072.
  • 26. Woodall, L.C., Gwinnett, C., Packer, M., Thompson, R.C., Robinson, L.F., & Paterson, G.L.J. 2015. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Marine Pollution Bulletin, 95(1), 40–46.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-009060e5-4d12-4ac6-ad18-ebad06268c52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.