PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the potential of fungal-bacterial consortium for low-cost biodegradation and detoxification of textile effluent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the enrichment and isolation of textile effluent decolorizing bacteria were carried out in wheat bran (WB) medium. The isolated bacterium Providencia rettgeri strain HSL1 was then tested for decolorization of textile effluent in consortium with a dyestuff degrading fungus Aspergillus ochraceus NCIM 1146. Decolorization study suggests that A. ochraceus NCIM 1146 and P. rettgeri strain HSL1 alone re moves only 6 and 32% of textile effluent American Dye Manufacturing Institute respectively in 30 h at 30 ±0.2°C of microaerophilic incubation, while the fungal-bacterial consortium does 92% ADMI removal within the same time period. The fungal-bacterial consortium exhibited enhanced decolorization rate due to the induction in activities of catalytic enzymes laccase (196%), lignin peroxidase (77%), azoreductase (80%) and NADH-DCIP reductase (84%). The HPLC analysis confirmed the biodegradation of textile effluent into various metabolites. Detoxification studies of textile effluent before and after treatment with fungal-bacterial consortium revealed reduced toxicity of degradation metabolites. The efficient degradation and detoxification by fungal-bacterial consortium pre-grown in agricultural based medium thus suggest a promising approach in designing low-cost treatment technologies for textile effluent.
Rocznik
Strony
12--21
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Konkuk University, Korea Department of Environmental Engineering
autor
  • Kyungpook National University, Korea Department of Environmental Engineering
autor
  • Konkuk University, Korea Department of Environmental Engineering
autor
  • Shivaji University, India Department of Biochemistry
Bibliografia
  • [1]. Acharya, V.M.M., Jena, S., Panda, K.K. & Panda, B.B. (2008). Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L., Ecotoxicology and Environmental Safety, 70, 2, pp. 300-310.
  • [2]. APHA (2012). Standard method for the examination of water and wastewater, American Public Health Association, Washington, DC, USA 2012.
  • [3]. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. & Struhl, K. (1997). Preparation and analysis of DNA, in: Current Protocols in Molecular Biology, Moore, D.D. & Dowhan, D. (Eds.), John Wiley and Sons, New York, NY, USA, pp. 2.0.1-2.0.3.
  • [4]. Chakraborty, R., Mukherjee, A.K. & Mukherjee, A. (2009). Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test, Environmental Monitoring and Assessment, 153, 1-4, pp. 351-357.
  • [5]. Chen, B.Y. & Chang, J.S. (2007). Assessment upon species evolution of mixed consortia for azo dye decolorization, Journal of the Chinese Institute of Chemical Engineers, 38, 3-4, pp. 259-266.
  • [6]. Chen, H., Hopper, S.L. & Cerniglia, C.E. (2005). Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein, Microbiology, 151, Pt 5, pp. 1433-1441.
  • [7]. Chen, K.C., Wu, J.Y., Liou, D.J. & Hwang, S.C. (2003). Decolorization of the textile dyes by newly isolated bacterial strains, Journal of Biotechnology, 101, 1, pp. 57-68.
  • [8]. Davies, L.C., Carias, C.C., Novais, J.M. & Martins-Dias, S. (2005). Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland, Ecological Engineering, 25, 5, pp. 594-605.
  • [9]. Djordjevic, D., Stojiljkovic, D. & Smelcerovic, M. (2014). Adsorption kinetics of reactive dyes on ash from town heating plant, Archives of Environmental Protection, 40, 3, pp. 123-135.
  • [10]. Eden, P.A., Schmidt, T.M., Blakemore, R.P. & Pace, N.R. (1991). Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction amplified 16S rRNA-specific DNA, International Journal of Systematic Bacteriology, 41, 2, pp. 324-325.
  • [11]. Eggert, C., Temp, U. & Eriksson, K.E. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase, Applied and Environmental Microbiology, 62, 4, pp. 1151-1158.
  • [12]. Hatvani, N. & Mecs, I. (2001). Production of laccase and manganese peroxidase by Lentinus edodes on malt containing by product of the brewing process, Process Biochemistry, 37, 5, pp. 491-496.
  • [13]. Kadam, A.A., Kulkarni, A.N., Lade, H.S. & Govindwar, S.P. (2014). Exploiting the potential of plant growth promoting bacteria in decolorization of dye Disperse Red 73 adsorbed on milled sugarcane bagasse under solid state fermentation, International Biodeterioration & Biodegradation, 86, part C, pp. 364-371.
  • [14]. Kadam, A.A., Lade, H.S., Patil, S.M. & Govindwar, S.P. (2013). Low cost CaCl2 pretreatment of sugarcane bagasse for enhancement of textile dyes adsorption and subsequent biodegradation of adsorbed dyes under solid state fermentation, Bioresource Technology, 132, pp. 276-284.
  • [15]. Kadam, A.A., Telke, A.A., Jagtap, S.S. & Govindwar, S.P. (2011). Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation, Journal of Hazardous Material, 189, 1-2, pp. 486-494.
  • [16]. Kahraman, S., Kuru, F., Dogan, D. & Yesilada, O. (2012). Removal of indigo carmine from an aqueous solution by fungus Pleurotus ostreatus, Archives of Environmental Protection, 38, 3, pp. 51-57.
  • [17]. Kalyani, D.C., Patil, P.S., Jadhav, J.P. & Govindwar, S.P. (2008). Biodegradation of reactive textile dye red BLI by an isolated bacterium Pseudomonas sp. SUK1, Bioresource Technology, 99, 11, pp. 4635-4641.
  • [18]. Keck, A., Rau, J., Reemtsma, T., Mattes, R., Stolz, A. & Klein, J. (2002). Identification of quinoide redox mediators that are formed during the degradation of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6, Applied and Environmental Microbiology, 68, 9, pp. 4341-4349.
  • [19]. Kulkarni, A.N., Kadam, A.A., Kachole, M.S. & Govindwar, S.P. (2014). Lichen Permelia perlata: A novel system for biodegradation and detoxification of disperse dye Solvent Red 24, Journal of Hazardous Material, 276, pp. 461-468.
  • [20]. Lade, H., Kadam, A., Paul, D. & Govindwar, S. (2015). A Low- -Cost Wheat bran medium for biodegradation of the benzidine- -based carcinogenic dye Trypan Blue using a microbial consortium, International Journal of Environmental Research and Public Health, 12, 4, pp. 3480-3505.
  • [21]. Lade, H.S., Waghmode, T.R., Kadam, A.A. & Govindwar, S.P. (2012). Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium, Internatinal Biodeteriotayion & Biodegradation, 72, pp. 94-107.
  • [22]. Lourenco, N.D., Novais, J.M. & Pinheiro, H.M. (2000). Reactive textile dye colour removal in a sequencing batch reactor, Water Science and Technology, 42, 5-6, pp. 321-328.
  • [23]. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent, Journal of Biological Chemistry, 193, 1, pp. 265-275.
  • [24]. Marik, J., Song, A. & Lam, K.S. (2003). Detection of primary aromatic amines on solid phase, Tetrahedron Letters, 44, 23, pp. 4319-4320.
  • [25]. Moosvi, S., Kher, X. & Madamwar, D. (2007). Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2, Dyes and Pigments, 74, 3, pp. 723-729.
  • [26]. Muyzer, G., de Waal, E.C. & Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA, Applied and Environmental Microbiology, 59, 3, pp. 695-700.
  • [27]. Nigam, P., Banat, I.M., Singh, D. & Marchant, R. (1996). Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes, Process Biochemistry, 31, 5, pp. 435-442.
  • [28]. Parshetti, G.K., Kalme, S.D., Gomare, S.S. & Govindwar, S.P. (2007). Biodegradation of reactive blue-25 by Aspergillus ochraceus NCIM-1146, Bioresource Technology, 98, 18, pp. 3638-3642.
  • [29]. Pasti-Grigsby, M.B., Paszczynski, A., Goszczynski, S., Crawford, D.L. & Crawford, R.L. (1992). Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium, Applied and Environmental Microbiology, 58, 11, pp. 3605-3613.
  • [30]. Phugare, S.S., Kalyani, D.C., Patil, A.V. & Jadhav, J.P. (2011a). Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies, Journal of Hazardous Material, 186, 1, pp. 713-723.
  • [31]. Phugare, S.S., Kalyani, D.C., Surwase, S.N. & Jadhav, J.P. (2011b). Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium, Ecotoxicology and Environmental Safety, 74, 5, pp. 1288-1296.
  • [32]. Qu, Y., Shi, S., Ma, F. & Yan, B. (2010). Decolorization of reactive dark blue K-R by the synergism of fungus and bacterium using response surface methodology, Bioresource Technology, 101, 21, pp. 8016-8023.
  • [33]. Salokhe, M.D. & Govindwar, S.P. (1999). Effect of carbon source on the biotransformation enzyme in Serratia marcescens, World Journal of Microbiology and Biotechnology, 15, 2, pp. 259-263.
  • [34]. Sharma, V.K. (2009). Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-A review, Journal of Environmental Science and Health. Part A, Toxic/ Hazardous Substances Environmental Engineering, 44, 14, pp. 1485-1495.
  • [35]. Singh, R., Kapoor, V. & Kumar, V. (2012). Utilization of agro-industrial wastes for the simultaneous production of amylase and xylanase by thermophilic Actinomycetes, Brazilian Journal of Microbiology, 43, 4, pp. 1545-1552.
  • [36]. Stolz, A. (2001). Basic and applied aspects in the microbial degradation of azo dyes, Applied Microbiology and Biotechnology, 56, 1-2, pp. 69-80.
  • [37]. Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0, Molecular Biology and Evolution, 24, 8, pp. 1596-1599.
  • [38]. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL W-improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice, Nucleic Acids Research, 22, 22, pp. 4673-4680.
  • [39]. Vandevivere, P.C., Bianchi, R. & Verstraete, W. (1998). Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies, Journal of Chemical Technology and Biotechnology, 72, 4, pp. 289-302.
  • [40]. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000). A greedy algorithm for aligning DNA sequences, Journal of Computational Biology, 7, 1-2, pp. 203-214.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-008d43f0-5bca-4c28-83c8-b40d288fe79a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.