PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nodulichnus hungaricus igen. et isp. nov. from the Early Miocene of North Hungary

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Early Miocene shallow-marine Salgótarján Lignite Formation of northern Hungary is host to a hitherto unknown trace fossil, here named Nodulichnus hungaricus igen. et isp. nov. This trace is a vertical, straight, or slightly winding, non-branching, tubular structure, 2–5 mm in diameter, and 50–100 mm long. It is filled with globose pellets, which are 0.5–0.6 mm in diameter. Generally, this trace fossil is isolated, but it may occur in clusters. Ethologically, it is a dwelling structure (domichnion), where the producer organism was living during high tide. Additionally, Nodulichnus hungaricus igen. et isp. nov. is accompanied by Ophiomorpha nodosa (Lundgren, 1891), Gyrolithes nodosus (Mayoral and Muñiz, 1998), Thalassinoides isp., Planolites isp. and Tomaculum problematicum (Groom, 1902), which occur sparsely at this level. The trace fossil assemblage is interpreted as being evolved in a ‘low-energy’, sandy beach setting.
Rocznik
Strony
181--200
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
  • Matra Museum of the Hungarian Natural History Museum, H-3200 Gyöngyös, Kossuth u. 40, Hungary
  • University of Debrecen, Department of Mineralogy and Geology, H-4032 Debrecen, Egyetem tér 1, Hungary
Bibliografia
  • 1. Alpert, S. P., 1974. Systematic review of the genus Skolithos. Journal of Paleontology, 48: 661-669.
  • 2. Alpert, S. P., 1975. Planolites and Skolithos from the Upper Precambrian - Lower Cambrian, White-Inyo Mountains, California. Journal of Paleontology, 49: 508-521.
  • 3. Ansell, A. D., 1988. Migration or shelter? Behavioural options for deposit feeding crabs on tropical sandy shores. In: Chelazzi, G. & Vannini, M. (eds), Behavioral Adaptation to Intertidal Life. Springer Science+Business Media, LLC, New York, pp. 15-26.
  • 4. Báldi, T., 1973. Jelentés a tardonai és tapolcsányi fúrások makrofauna vizsgálatairól. Kézirat, ELTE Földtani Tanszék, Budapest, 6 pp. [In Hungarian.]
  • 5. Bałuk, W. & Radwański, A., 1979. Polychaete-attributable faecal pellets, Tibikoia sanctacrucensis ichnosp. n., from the Korytnica Clays (Middle Miocene; Holy Cross Mountains, Central Poland). Acta Geologica Polonica, 29: 339-344.
  • 6. Bartkó, L., 1961. Über das Alter der nordungarischen Braunkohlenflöze. Földtani Közlöny, 91: 143-146. [In Hungarian, with German summary.]
  • 7. Benton, M. J. & Hiscock, C., 1996. Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England. Proceedings of the Geologists' Association, 107: 199-208.
  • 8. Bohn-Havas, M., 1985. A Kelet-borsodi medence ottnangi képzodményeinek mollusca vizsgálata. Geologica Hungarica Series Paleontologica, 48: 99-177. [In Hungarian.]
  • 9. Bohn-Havas, M., Nagy, E., Nagy-Bodor, E., Radócz, G., Rákosi, L. & Szegö, É., 2000. Paleoenvironmental reconstruction of cyclic coal-bearing sequence in Borsod basin (N. Hungary). Geological Society of Greece, Special Publications, 9: 37-42.
  • 10. Bown, T. M. & Kraus, M. J., 1983. Ichnofossils of the alluvial Willwood Formation (Lower Eocene), Bighorn Basin, Northwest Wyoming, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 43: 95-128.
  • 11. Brongniart, A. T., 1849. Tableau des generes de végétaux fossiles considérés sous le point de vue de leur classification botanique et de leur distribution géologique. Dictionnaire Universel Histoire Naturelle, 13: 1-27 (152-176). Paris.
  • 12. Buatois, L. A., Wisshak, M., Wilson, M. A. & Mángano, M. G., 2017. Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth-Science Reviews, 164: 102-181.
  • 13. Chamberlain, C. K., 1977. Ordovician and Devonian trace fossils from Nevada. Nevada Bureau of Mines and Geology Bulletin, 90: 1-24.
  • 14. Clayton, D. A. & Al-Kindi, A., 1998. Population structure and dynamics of two scopimerine sand crabs Scopimera crabricauda Alcock 1900 and Dotilla sulcata (Forskall 1775) in an estuarine habitat in Oman. Tropical Zoology, 11: 197-215.
  • 15. Collins, S. H. & Morris, S. F., 1975. A new crab, Costacopluma concave from the Upper Cretaceous of Nigeria. Palaeontology, 18: 823-829.
  • 16. Császár, G. (ed.), 1997. Magyarország Litosztratigráfiai Alapegységei. Magyar Állami Földtani Intézet, Budapest, 114 pp. [In Hungarian.]
  • 17. Csepreghy-Meznerics, I., 1953. La faune et Tage des couches du mur des gisement de charbon a Salgótarján. Földtani Közlöny, 83: 35-56. [In Hungarian, with Russian and French summaries.]
  • 18. Csontos, L. & Nagymarosy, A., 1998. The Mid-Hungarian line: a zone of repeated tectonic inversions. Tectonophysics, 297: 51-71.
  • 19. Curran, H. A., 1984. Ichnology of Pleistocene carbonates on San Salvador, Bahamas. Journal of Paleontology, 58: 312-321.
  • 20. Dávid, Á., Püspöki, Z., Kónya, P., Vincze, L., Kozák, M. & McInthos, R. W., 2006. Sedimentology, paleoichnology and sequence stratigraphy of a Karpatian sandy facies (Salgótarján Lignite Formation, N Hungary). Geologica Carpathica, 57: 279-294.
  • 21. Eiserhardt, K.-H., Koch, L. & Eiserhardt, W. L., 2001. Revision of the ichnotaxon Tomaculum Groom, 1902. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 221: 325-358.
  • 22. Elek, I., 1974. Diósgyőri barnakőszénkutatás szénkőzettani vizsgálatának eredményei. Unpublished manuscript. MGSZ Adattár, Budapest, pp. 1-22. [In Hungarian.]
  • 23. Fishelson, L., 1983. Population ecology and biology of Dotilla sulcata (Crustacea, Ocypodidae) typical for sandy beaches of the Red Sea. Developmental Hydrobiology, 19: 643-654.
  • 24. Fischer-Ooster, C., 1858. Die fossilen Fucoiden der Schweizer Alpen, nebst Erörterungen über deren geologisches Alter. Huber, Bern, 72 pp.
  • 25. Fodor, L., Csontos, L., Bada, G., Györfi, I. & Benkovics, L., 1999: Tertiary tectonic evolution of the Pannonian Basin system and neighbouring orogens: a new synthesis of paleostress data. In: Durand, B., Jolivet, L., Horváth, F. & Séranne, M. (eds), The Mediterranean basins: Tertiary extension within Alpine orogen. Geological Society. London, Special Publications, 156: 295-334.
  • 26. Frey, R. W. & Howard, J. D., 1985. Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah. Journal of Paleontology, 59: 370-404.
  • 27. Frey, R. W., Howard, J. D. & Pryor, W. A., 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23: 199-229.
  • 28. Garcia-Ramos, J. C., Mángano, M. G., Piñuela, L., Buatois, L. A. & Rodríguez-Tovar, F. J., 2014. The ichnogenus Tubotomaculum: An enigmatic pellet-filled structure from Upper Cretaceous to Miocene deep-marine deposits of southern Spain. Journal of Paleontology, 88: 1189-1198.
  • 29. Gibert, J. M., de & Goldring, R., 2007. An ichnofabric approach to the depositional interpretation of the intensely burrowed Bateig Limestone, Miocene, SE Spain. Sedimentary Geology, 194: 1-16.
  • 30. Gibert, J. M., de, Netto, R. G., Tognoli, F. M. W. & Grangeiro, M. E., 2006. Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 230: 70-84.
  • 31. Gibert, J. M., de, Silva, C. M. da & Cachao, M., 1998. Ichnofábrica de Ophiomorpha/Conichnus en el mioceno inferior de Cristo Rei (Almada, Portugal). Implicaciones paleoambientales. Revista Espanola de Paleontologia, 13: 251-259.
  • 32. Giraldo-Villegas, C. A., Celis, S. A., Rodríguez-Tovar, F. J., Padro-Trujillo, A., Vallejo-Hincapié, D. F. & Trejos-Tamayo, R. A., 2016. Ichnological analysis of the Upper Miocene in the ANH-Tumaco-1-ST-P well: assessing paleoenvironmental conditions at the Tumaco Basin, in the Colombian Pacific. Journal of South American Earth Sciences, 71: 41-53.
  • 33. Groom, T., 1902. The sequence of the Cambrian and associated beds of the Malvern Hills. The Quartarly Journal of the Geological Society of London, 58: 89-149.
  • 34. Gyalog, L. (ed.), 1996. A földtani térképek jelkulcsa és a rétegtani egységek rövid leírása. Geological Institute of Hungary, Budapest, 171 pp. [In Hungarian.]
  • 35. Hasiotis, S. T., 2006. Continental trace fossils. SEPM Short Notes, 51: 1-132.
  • 36. Hayasaka, I., 1935. The burrowing activities of certain crabs and their geologic significance. The American Midland Naturalist, 16: 99-103.
  • 37. Heer, O., 1865. Die Urwelt der Schweiz. Friedrich Schulthess, Zürich, 117 pp.
  • 38. Hegyi, J. (ed.), 1986. Borsodi barnaszén előfordulás kutatási kőzetmintámak laboratóriumi vizsgálata (Bánhorváti - 24 számú fúrás). Unpublished manuscript. OFKFV Központi Anyagvizsgáló Laboratórium, Komló, pp. 1-65. [In Hungarian.]
  • 39. Izumi, K., 2012. Formation process of the trace fossil Phymatoderma granulata in the Lower Jurassic black shale (Posidonia Shale, southern Germany) and its paleoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 353-355: 116-122.
  • 40. Izumi, K., 2015. Deposit feeding by the Pliocene deep-sea macrobenthos, synchronized with phytodetritus input: Micropaleontological and geochemical evidence recorded in the trace fossil Phymatoderma. Palaeogeography, Palaeoclimatology, Palaeoecology, 431: 15-25.
  • 41. Izumi, K., Rodríguez-Tovar, F. J., Pifluela, L. & García-Ramos, J. C., 2014. Substrate- independent feeding mode of the ichnogenus Phymatoderma from the Lower Jurassic shelf- sea deposits of central and western Europe. Sedimentary Geology, 312: 19-30.
  • 42. Juhász, A., 1965. A keletborsodi helvéti barnakőszéntelepek szénkőzettani vizsgálata. Földtani Közlöny, 95: 71-78. [In Hungarian, with German summary.]
  • 43. Juhász, A., 1966. Szerkezeti megfigyelések a keletborsodi barnakoszén-medence ūledėksoraban. Földtani Kutatás, 9: 13-16. [In Hungarian.]
  • 44. Juhász, A., 1970. Kohlenpetrographische und lagerstättenkundliehe Untersuchungen helvetischer Braunkohlenflöze im Ostteil des Borsoder Beckens. Földtani Közlöny, 100: 293306. [In Hungarian, with German summary.]
  • 45. Juhász, A., 1988. Circumstances of formation of the coal seams of W Borsod in bog zones. Földtani Közlöny, 118: 125-145. [In Hungarian, with English summary.]
  • 46. Katto, J., 1974. A pellet-cord from the Cenozoic (Miocene) of Higashi-Muro-gun, Wakayama Prefecture, Southwest Japan. Contribution from the Department of Geology, Researcher Reports of Kochi University, 57: 1-10.
  • 47. Kennedy, W. J. & MacDougall, J. D. S., 1969. Crustacean burrows in the Weald Clay (Lower Cretaceous) of South-eastern England and their environmental significance. Palaeontology, 12: 459-471.
  • 48. Király, E., 1989. A Bükk hegység ÉNy-i előterének geoelektromos kutatása. Annual Report of the Eötvös Loránd Geophysical Institute of Hungary, for 1987: 1-42. [In Hungarian.]
  • 49. Korecz-Laky, I., 1985. A Kelet-borsodi medence ottnangi képződményeinek Foraminifera vizsgálata. Geologica Hungarica Series Palaeontologica, 48: 180-237. [In Hungarian.]
  • 50. Kulkarni, K. G. & Panchang, R., 2015. New insights into polychaete traces and fecal pellets: another complex ichnotaxon? PLoS ONE, https://doi.org/10.1371/journal.pone.0139933, 1-10.
  • 51. LoBue, D. J., 2006. Ichnotaxonomic Assessment of Mazon Creek Area Trace Fossils, Illinois, USA. Unpublished master's thesis, Arizona State University, 121 pp.
  • 52. Lundgren, B., 1891. Studier öfver fossilförande lösa block. Geologiska Föreningen i Stockholm Förhandlingar, 13: 111-121.
  • 53. Mayoral, E. and Muñiz, F., 1998. Nuevos datos icnotaxonómicos sobre Gyrolithes del Plioceno Inferior de la Cuenca del Guadalquivir (Lepe, Huelva, Espana). Revista Espanola de Paleontología, 13: 61-69.
  • 54. Massalongo, A., 1856. Studi Paleontologici. Antonelli, Verona, 53 pp.
  • 55. Miller, D. C., 1961. The feeding mechanism of fiddler crabs, with ecological considerations of feeding adaptations. Zoologica, 46: 89-100.
  • 56. Miller, M. F. & Curran, H. A., 2001. Behavioral plasticity of modern and Cenozoic burrowing thalassinidean shrimp. Palaeogeography, Palaeoclimatology, Palaeoecology, 166: 219-236.
  • 57. Miller III, W., 2011. A stroll in the forest of the fucoids: Status of Melatercichnus burkei Miller, 1991, the doctrine of ich- notaxonomic conservatism and the behavioral ecology of trace fossil variation. Palaeogeography, Palaeoclimatology, Palaeoecology, 307: 109-116.
  • 58. Nagy, E., 1992. A comprehensive study of Neogene sporomorphs in Hungary. Geologica Hungarica Series Palaeontologica, 53: 1-379. [In Hungarian, with English summary.]
  • 59. Netto, R. G., Curran, H. A., Belaústegui, Z. & Tognoli, F. M. W., 2017. Solving a cold case: New occurrences reinforce juvenile callianassids as the Ophiomorpha puerilis tracemakers. Palaeogeography, Palaeoclimatology, Palaeoecology, 475: 93-105.
  • 60. Ono, Y., 1965. On the ecological distribution of ocypodid crabs in the estuary. Memoirs of the Faculty of Science Kyushu University, Series E, Biology, 41: 1-60.
  • 61. Pallas, P. S., 1772. Spicilegia Zoologica, quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur cura P.S. Pallas. Fasciculus 9. Berolini, 86 pp.
  • 62. Papp, K., 1916. A Magyar Birodalom vasérc- és koszénkészlete. Magyar Királyi Földtani Intézet, Budapest, 964 pp. [In Hungarian.]
  • 63. Pervesler, P. & Zuschin, M., 2004. A lucinoid bivalve trace fossil Saronichnus abeli igen. et isp. nov. from the Miocene molasse deposits of Lower Austria, and its environmental significance. Geologica Carpathica, 55: 111-115.
  • 64. Pollard, J. E., Goldring, R. & Buck, S. G., 1993. Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. Journal of the Geological Society, 150: 149-164.
  • 65. Püspöki, Z., 2001. Szekvencia sztratigráfiai vizsgálatok a kelet-borsodi medence déli részén (Tardonai-dombság). Földtani Közlöny, 131: 361-385. [In Hungarian]
  • 66. Püspöki, Z., 2002. A Tardonai-dombság miocén medencefejlodése az ūledėkes szekvenciák fáciesés rétegtani adatainak tukrében. Unpublished PhD dissertation. University of Debrecen, 53 pp. [In Hungarian.]
  • 67. Püspöki, Z., Hámor-Vidó, M., Pummer, T., Sári, K., Lendvay, P., Detzky, G., Gúthy, T., Kiss, J., Buday-Bódi, E., Kovács, Zs., Báldi, K., Prakfalvi, P., Markos, G., Selmeczi, I. & McIntosh, R. W., 2017. A sequence stratigraphic investigation of a miocene formation supported by coal seam quality parameters - Central Paratethys, N-Hungary. International Journal of Coal Geology, 179: 196-210.
  • 68. Püspöki, Z., Piros, O. & Kozák, M., 1995. Mikrofácies studies on Sarmatian limestone pebbles in East Bükk. Acta Geographica, Geologica et Meteorologica Debrecenica, 32: 219-238. [In Hungarian, with English summary.]
  • 69. Püspöki, Z., Tóth-Makk, Á., Kozák, M., Dávid, Á., McIntosh, R. W., Buday, T., Demeter, G., Kiss, J., Püspöki-Terebesi, M., Barta, K., Csordás, Cs. & Kiss, J., 2009. Truncated higher order sequences as responses to compressive intraplate tectonic events superimposed on eustatic sea-level rise. Sedimentary Geology, 219: 208-236.
  • 70. Radnóty, E., 1948. Observations géologiques dans la Partié Méridionale du Bassin Ligniteux de Borsod en Hongrie. Földtani Közlöny, 78: 121-126. [In Hungarian, with French summary.]
  • 71. Radócz G., 1983. A Dubicsány 31. sz. fúrás dokumentációja. Kézirat, Országos Földtani és Geofizikai Adattár Magyar Állami Földtani Intézet, Budapest, 326 pp. [In Hungarian.]
  • 72. Radócz, G., 1987. Újabb Rzehakiás (Oncophorás) rétegek a Nyborsodi medence koszémsszletéboL Unpublished manuscript. Országos Földtani és Geofizikai Adattár - Magyar Állami Földtani Intézet, Budapest, 5 pp. [In Hungarian.]
  • 73. Radócz, G., 1993. A borsodi kőszénláprekonstrukciós vizsgálatok 1987-1993 között végzett eredményeinek összefoglaló értékelése I. Földtani viszonyok. Unpublished manuscript. Országos Földtani és Geofizikai Adattár - Magyar Állami Földtani Intézet, Budapest, 55 pp. [In Hungarian.]
  • 74. Richter, R. & Richter, E., 1939. Marken und Spuren aus allen Zeiten, II: Eine Lebensspur (Syncoprulus pharmaceus), gemeinsam dem rheinischen und böhmischen Ordovicium. Senckenbergiana, 21: 152-167.
  • 75. Rodríguez-Tovar, F. J. & Uchman, A., 2004. Trace fossils after the K-T boundary event from the Agost section, SE Spain. Geological Magazine, 141: 429-440.
  • 76. Rodríguez-Tovar, F. J. & Uchman, A., 2006. Ichnological analysis of the Cretaceous-Palaeogene boundary interval at the Caravaca section, SE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 242: 313-325.
  • 77. Rothpletz, A., 1896. Ueber die Flysch-Fucoiden und einige andere fossile Algen sowie über lassiche, Diatomeen führende Homschwamme. Zeitschrift für Deutschen Geologischen Gesellshaft, 48: 854-914.
  • 78. Salama, W., El Aref, M. M. & Gaupp, R., 2013. Mineral evolution and processes of ferruginous microbialite accretion-an example from the Middle Eocene stromatolitic and ooidal ironstones of the Bahariya Depression, Western Desert, Egypt. Geobiology, 11: 15-28.
  • 79. Schlirf, M. & Uchman, A., 2005. Revision of the ichnogenus Sabellarifex Richter,1921 and its relationship to Skolithos Haldeman, 1840 and Polykladichnus Fürsich, 1981. Journal of Systematic Palaeontology, 3: 115-131.
  • 80. Schréter, Z., 1929. A borsod-hevesi szén- és lignitterületek bányaföldtani leírása. Magyar Állami Földtani Intézet, Budapest, 386 pp. [In Hungarian.] 200
  • 81. Silas, E. G. & Sankarankutty, C., 1967. Field investigations on the shore crabs of the Gulf of Mannar and Palk Bay, with special reference to the ecology and behaviour of the pellet crab Scopimera proxima Kemp. Marine Biological Association of India, Symposium Series, 2: 1008-1025.
  • 82. Sütő-Szentai, M., 2000. A Ra-1. jelű minták szervesvázú mikroplankton és sporomorpha vizsgálata. Kézirat, Természettudományi Gyűjtemény Adattára, Komló, 3 pp. [In Hungarian.]
  • 83. Szalay, I., Dudás, J., Hegedűs, E., Schönviszky, L. & Taba, S., 1976. Geofizikai szerkezetkutatás a Darnó-vonal környékén. Annual Report of the Eötvös Loránd Geophysical Institute of Hungary, for 1975: 26-30. [In Hungarian.]
  • 84. Taylor, A. M. & Goldring, R., 1993. Description and analysis of bi- oturbation and ichnofabric. Journal of the Geological Society, London, 150: 141-148.
  • 85. Uchman, A. & Gaździcki, A., 2010. Phymatoderma melvillen-sis isp. nov. and other trace fossils from the Cape Melville Formation (Lower Miocene) of King George Island, Antarctica. Polish Polar Research, 31: 83-99.
  • 86. Uchman, A., Rodríguez-Tovar, F. J., Machaniec, E. & Kędzierski, M., 2013. Ichnological characteristics of Late Cretaceous hemipelagic and pelagic sediments in a submarine high around the OAE-2 event: A case from the Rybie section, Polish Carpathians. Palaeogeography, Palaeoclimatology, Palaeoecology, 370: 222-231.
  • 87. Uchman, A. & Wetzel, A., 2017. Hidden subsurface garden on own faeces - the trace fossil Tubulichnium rectum (Fischer-Ooster, 1858) from the Cretaceous-Palaeogene deep-sea sediments. Palaeontologia Electronica, 20.2.40A: 1-18.
  • 88. Vadász, E., 1929. A Borsodi szénmedence bányafyöldtam viszonyai. Magyar Állami Földtani Intézet, Budapest, 68 pp. [In Hungarian.]
  • 89. Van Wagoner, J. C., Mitchum, R. M., Campion, K. M. & Rahmanian, V. D., 1990. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies. AAPG Methods in Exploration, 7: 1-155.
  • 90. Vitális, I., 1939. Magyarország szénelőfordulásai. Röttig-Romwalter Nyomda Rt., Sopron, 407 pp. [In Hungarian.]
  • 91. Vršanský, P, Lis, J. A., Schlögl, J., Guldan, M., Mlýnský, T.,Barna, P. & Štys, P., 2015. Partially disarticulated new Miocene burrower bug (Hemiptera: Heteroptera: Cydnidae) from Cerová (Slovakia) documents occasional preservation of terrestrial arthropods in deepmarine sediments. European Journal of Entomology, 112: 844-854.
  • 92. Wong, K. J. H., Shih, H. & Chan, B. K. K., 2011. Two new species of sand-bubbler crabs, Scopimera, from North China and the Philippines (Crustacea: Decapoda: Dotillidae). Zootaxa, 2962: 21-35.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-008615ac-593e-4ed6-970d-8739f4179861
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.