PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of lithium-iron-phosphate and sodium-ion energy storage devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analizaporównawcza urządzeń do magazynowania energii z użyciem akumulatorów litowo-żelazowo-fosforanowych i sodowo-jonowych
Języki publikacji
EN
Abstrakty
EN
Energy storage is the process of accumulating, releasing, and managing energy using storage devices. Today, this principle of energy storage is playing an important role in energy supply, as renewable sources become more and more responsible for energy production. Moreover, since it is not possible to regulate the amount of energy from renewable sources, it is necessary to store energy during periods of lower demand or higher production, from sources such as solar and wind energy. Over the past century, a wide range of energy storage technologies have been developed, from large-scale hydroelectric power plants to advanced electrochemical storage. Hydroelectric power plants remain the main method of long-term energy storage due to their high capacity and durability. At the same time, lithium-iron-phosphate and sodium-ion batteries open up new opportunities for energy storage at the local level, making them promising for integration into modern power systems. In addition, the efficient use of energy storage can minimize the risks of electricity shortages during critical periods and ensure the stability of the power system. This is achieved due to the ability of energy storage to effectively level the load, compensate for fluctuations in renewable energy generation, and provide reliable backup power. In particular, LiFePO4 and Na-Ion technologies demonstrate high energy efficiency, which allows them to be integrated into various segments of the power system – from household devices to large-scale industrial plants. Their use also helps to reduce the carbon footprint of the energy sector, which is important for achieving sustainable development goals. In this paper, we compare two types of electrochemical storage devices – LiFePO4 and Na-Ion. Particular attention will be paid to their durability, energy efficiency, materials from which they are made, and technical characteristics. Also, their economic feasibility and prospects for implementation in commercial and domestic applications will be assessed.
PL
Magazynowanie energii to proces gromadzenia, oddawania i zarządzania energią za pomocą urządzeń magazynujących. Obecnie ta zasada magazynowania energii odgrywa ważną rolę w dostawach energii, ze względu na to, że źródła odnawialne stają się coraz bardziej istotne w produkcji energii. Ponadto, ponieważ regulacja ilości energii ze źródeł odnawialnych nie jest możliwa, konieczne jest magazynowanie energii w okresach niższego zapotrzebowania lub wyższej produkcji, ze źródeł takich jak energia słoneczna i wiatrowa. W ciągu ostatniego stulecia opracowano szeroką gamę technologii magazynowania energii, od wielkoskalowych elektrowni wodnych po zaawansowane magazyny elektrochemiczne. Elektrownie wodne (szczytowo-pompowe) pozostają główną metodą długoterminowego magazynowania energii ze względu na ich wysoką wydajność i trwałość. Jednocześnie akumulatory litowo-żelazowo-fosforanowe i sodowo-jonowe otwierają nowe możliwości magazynowania energii na poziomie lokalnym, co czyni je obiecującymi do integracji z nowoczesnymi systemami energetycznymi. Ponadto efektywne wykorzystanie magazynów energii może zminimalizować ryzyko niedoborów energii elektrycznej w krytycznych okresach i zapewnić stabilność systemu energetycznego. Osiąga się to dzięki wykorzystaniu magazynów energii do skutecznego wyrównywania obciążenia, kompensowania wahań w wytwarzaniu energii odnawialnej i zapewniania niezawodnego zasilania rezerwowego. W szczególności technologie LiFePO4 i Na-Ion wykazują wysoką wydajność energetyczną, co pozwala na ich integrację z różnymi elementami systemu energetycznego - od urządzeń gospodarstwa domowego po duże zakłady przemysłowe. Ich zastosowanie pomaga również zmniejszyć ślad węglowy sektora energetycznego, co jest ważne dla osiągnięcia celów zrównoważonego rozwoju. W tym artykule porównano dwa rodzaje elektrochemicznych urządzeń magazynujących – LiFePO4 i Na-Ion. S Szczególna uwaga zostanie zwrócona na ich trwałość, wydajność energetyczną, materiały, z których są wykonane oraz charakterystykę techniczną. Oceniona zostanie również ich ekonomiczna wykonalność i perspektywy wdrożenia w zastosowaniach komercyjnych i domowych.
Rocznik
Strony
49--54
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan
  • Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan
  • Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan
  • State Biotechnological University, Department of Electricity Supply and Energy Management, Kharkiv, Ukraine
  • State Biotechnological University, Department of Electricity Supply and Energy Management, Kharkiv, Ukraine
  • State Biotechnological University, Department of Electricity Supply and Energy Management, Kharkiv, Ukraine
  • State Biotechnological University, Department of Electricity Supply and Energy Management, Kharkiv, Ukraine
  • State Biotechnological University, Department of Electricity Supply and Energy Management, Kharkiv, Ukraine
autor
  • Dmytro Motornyi Tavria State Agrotechnological University, Department of Electrical Engineering and Electromechanics named after Prof. V.V. Ovharov, Zaporizhia, Ukraine
autor
  • State Biotechnological University, Department of Agricultural Engineering, Kharkiv, Ukraine
Bibliografia
  • [1] Adaikkappan M., Sathiyamoorthy N.: Modeling, state of charge estimation, and charging of lithium-ion battery in electric vehicle: A review. Int. J. Energy Res. 46(5), 2021, 2141–2165 [https://doi.org/10.1002/er.7339].
  • [2] Al_Issa H. A. et al.: Correct Cross-Section of Cable Screen in a Medium Voltage Collector Network with Isolated Neutral of a Wind Power Plant, Energies 14, 2021, 3026 [https://doi.org/10.3390/en14113026].
  • [3] Al_Issa H. et al.: Assessment of the Effect of Corona Discharge on Synchronous Generator Self-Excitation. Energies 15(6), 2022 [https://doi.org/10.3390/en15062024].
  • [4] Bashir T. et al.: A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Mater. 1, 2021, 100019.
  • [5] Belik M.: Optimisation of energy accumulation for renewable energy sources. Renew. Energy Power Qual. J. 2021, 19, 205–210 [https://doi.org/10.24084/repqj19.258].
  • [6] Halko S., Suprun O., Miroshnyk O.: Influence of Temperature on Energy Performance Indicators of Hybrid Solar Panels Using Cylindrical Cogeneration Photovoltaic Modules. 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2021, 132–136 [https://doi.org/10.1109/KhPIWeek53812.2021.9569975].
  • [7] Hannan M. A. et al.: Impact assessment of battery energy storage systems towards achieving sustainable development goals, J. Energy Storage 42, 2021, 103040 [https://doi.org/10.1016/j.est.2021.103040].
  • [8] Jamil M. et al.: Hybrid Anode Materials for Rechargeable Batteries – A Review of Sn/TiO2 Based Nanocomposites. Energy Rep. 7, 2021, 2836, 2836–2848 [https://doi.org/10.1016/j.egyr.2021.05.004].
  • [9] Karaiev O. et al.: Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 24(3), 2021, 119–123 [https://doi.org/10.2478/ata-2021-0020].
  • [10] Khasawneh A. et al.: Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line. Energies 14, 2021, 6791 [https://doi.org/10.3390/en14206791].
  • [11] Komada P. et al.: The incentive scheme for maintaining or improving power supply quality. Przegląd Elektrotechniczny 5, 2019, 79–82 [https://doi.org/10.15199/48.2019.05.20].
  • [12] Kumar R., Goel V.: A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review. J. Energy Storage 71, 2023, 108025 [https://doi.org/10.1016/j.est.2023.108025].
  • [13] Lakshmi G. S. et al.: Battery Energy Storage Technologies for Sustainable Electric Vehicles and Grid Applications. Journal of Physics: Conference Series 1495, 2020, 012014 [https://doi.org/10.1088/1742-6596/1495/1/012014].
  • [14] Lezhenkin O. M. et al.: Investigation of the separation of combed heap of winter wheat. Journal of Physics: Conference Series, International Conference on Applied Sciences (ICAS 2020), Hunedoara, Romania, 20–22 May 2020, 1781, 12016 [https://doi.org/10.1088/1742-6596/1781/1/012016].
  • [15] Lezhniuk P., Buslavets O. Rubanenko O.: Balancing electricity generation and consumption in a system with renewable energy sources. 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2021, 63–68 [https://doi.org/10.1109/KhPIWeek53812.2021.9570087].
  • [16] Makovenko E. et al.: Single-phase three-level qZ-source inverter connected to the grid with battery storage and active power decoupling function. 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–13 November 2018, 1–6 [https://doi.org/10.1109/RTUCON.2018.8659843].
  • [17] Markowska K. et al.: Analysis and improvement of power quality in the onboard electrical power systems within a self-propelled floating crane. International Journal of Electrical Power & Energy Systems 161, 2024, 110179 [https://doi.org/10.1016/j.ijepes.2024.110179].
  • [18] Martinko D. et al.: Planning of the Optimal Performance of Household Photovoltaics and Battery Storage within Consideration of Investment Return. Przeglad Elektrotechniczny 100(1), 2024, 105–111 [https://doi.org/10.15199/48.2024.01.22].
  • [19] Miroshnuk O., Tymchuk S.: Uniform distribution of loads in the electric system 0.38/0.22 kV using genetic algorithms. Technical Electrodynamics 4, 2013, 67–73.
  • [20] Miroshnyk O. et al.: Investigation of Smart Grid Operation Modes with Electrical Energy Storage System. Energies 16, 2023, 2638 [https://doi.org/10.3390/en16062638].
  • [21] Patel T.: A Comparative Study of Lithium-ion and Sodium-ion Batteries: Characteristics, Performance, and Challenges. Friedrich Alexander Universität Erlangen Nürnberg (FAU), 14 March 2023 [https://open.fau.de/handle/openfau/21891].
  • [22] Qawaqzeh M. et al.: The assess reduction of the expected energy not-supplied to consumers in medium voltage distribution systems after installing a sectionalizer in optimal place. Sustain. Energy, Grids and Networks 34, 2023, 101035 [https://doi.org/10.1016/j.segan.2023.101035].
  • [23] Qawaqzeh M. Z. et al.: Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies 14, 2021, 4780 [https://doi.org/10.3390/en14164780].
  • [24] Rudola A. et al.: Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 9, 2021, 8279–8302 [https://doi.org/10.1039/D1TA00376C].
  • [25] Rudola A.: The Future of Clean Transportation: Sodium-ion Batteries [http://www.bridgeindia.org.uk].
  • [26] Sayahpour B. et al.: Perspective: Design of cathode materials for sustainable sodium-ion batteries. MRS Energy Sustain. 9, 2022, 183–197 [https://doi.org/10.1557/s43581-022-00029-9].
  • [27] Schwarz S.: Lithium Iron Phosphate – enabling the future of individual electric mobility, 2022 [https://www.e-motec.net/lithium-iron-electric-mobility].
  • [28] Shi N. et al.: State of charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification. J. Energy Storage 45, 2021, 103518 [https://doi.org/10.1016/j.est.2021.103518].
  • [29] Subramanyan K. et al.: Fabrication of Na-Ion full-cells using carbon-coated Na3V2(PO4)2O2F cathode with conversion type CuO nanoparticles from spent Li-Ion batteries. Small Methods 2022, 6, 2200257 [https://doi.org/10.1002/smtd.202200257].
  • [30] Szafraniec A. et al.: Magnetic field parameters mathematical modelling of windelectric heater. Przeglad Elektrotechniczny 97, 2021, 8, 36–41 [https://doi.org/10.15199/48.2021.08.07].
  • [31] Trunova I. et al.: The perfection of motivational model for improvement of power supply quality with using the one-way analysis of variance, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, 2019, 163–168 [https://doi.org/10.29202/nvngu/2019-6/24].
  • [32] Tymchuk S. et al.: Assess electricity quality by means of fuzzy generalized index. Eastern-European Journal of Enterprise Technologies 3(4(75)), 2015, 26–31 [https://doi.org/10.15587/1729-4061.2015.42484].
  • [33] Tymchuk S. et al.: Calculation of energy losses in relation to its quality in fuzzy form in rural distribution networks. Eastern-European Journal of Enterprise Technologies 1(8(73)), 2015, 4–10 [https://doi.org/10.15587/1729-4061.2015.36003].
  • [34] Battery Data online [https://calce.umd.edu/battery-data#Storage].
  • [35] First Phosphate. How the LFP Battery Works [https://firstphosphate.com/phosphate-industry/about-the-lfpbattery/#:~:text=How%20the%20LFP%20Battery%20Works,than%20one%20n egatively%20charged%20element].
  • [36] FutureBatteryLab. The big beginner’s guide to Sodium-Ion batteries [https://futurebatterylab.com/the-big-beginners-guide-to-sodium-ion-batteries].
  • [37] Identifying the pinch points in the LFP supply chain [https://firstphosphate.com/lfp-battery-strategy].
  • [38] Na-Ion battery online [https://www.hinabattery.com/en/index.php?catid=12].
  • [39] Samsung INR18650-25R datasheet [https://www.powerstream.com/p/INR18650-25R-datasheet.pdf].
  • [40] Sodium Ion Batteries: Performance Advantages and Broad Application Prospects in Extreme Temperatures. [https://www.LiFePO4-battery.com/News/sodium-ion-batteries-advantages.html].
  • [41] Sodium-Ion Battery Market [https://www.marketsandmarkets.com/Market Reports/sodium-ion-battery-market-207269067.html]
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-00852d74-a86f-4c1a-9084-a0fcdedca02a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.