PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface water load and earthquake stress interactions near the Pirrís reservoir, Costa Rica

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study analyzes the relationships between the stress changes produced by the water load variations due to the filling operations at the Pirrís Reservoir, Costa Rica, and the stress changes generated by three relevant earthquakes after the first impoundment. The earthquakes differ in their magnitude, distance from reservoir and depth. Two of them correspond to a shallow crustal faulting, and the third earthquake corresponds to a subduction thrust-fault. The first filling operations began in March 2011 and the daily time history of water levels was available until December 2017. The seismicity has been recorded by a dense local network of seismological stations operating since January 2008. Effects of both types of sources (water loads and earthquakes) were combined to obtain the total Coulomb Failure Stress in the reservoir area, analyzing which of them was dominant in each case and time. We then analyzed the effects of the pore pressure diffusion due to the water loads on the nearby seismicity including two of the studied earthquakes. Results lead to different conclusions depending on the characteristics of each earthquake. An important result is observed after the occurrence of the subduction earthquake, where the coseismic effects become dominant along the entire study area, eclipsing the effect of water loading at all depths. This shows that in a regime stressed by a regional earthquake, albeit of its moderate magnitude, and regional distance, the effect of water loads is barely perceptible. In the absence of tectonic activity, however, the impact of water loading is notable.
Czasopismo
Rocznik
Strony
2065--2080
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • ETSI en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid (UPM), Carretera de Valencia Km 7, 28031 Madrid, Spain
  • Instituto Geográfico Nacional (IGN), C/General Ibáñez de Íbero 3, 28003 Madrid, Spain
  • Departamento de Sismología, Instituto de Geofísica, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Coyoacán, 04510 Ciudad de México, Mexico
  • ETSI en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid (UPM), Carretera de Valencia Km 7, 28031 Madrid, Spain
  • Área de Amenazas y Auscultación Sísmica y Volcánica, Instituto Costarricense de Electricidad (ICE), 10032-1000 San José, Costa Rica
  • Área de Amenazas y Auscultación Sísmica y Volcánica, Instituto Costarricense de Electricidad (ICE), 10032-1000 San José, Costa Rica
Bibliografia
  • 1. Alvarado GE, Benito B, Staller A, Climent A, Camacho E, Rojas W, Marroquín G, Molina E, Talavera JE, Martínez-Cuevas S, Lindholm C (2017) The new central american seismic hazard zonation: Mutual consensus based up to day seismotectonic framework. Tectonophysics 721:462–476. https://doi.org/10.1016/j.tecto.2017.10.013
  • 2. Barquero R, Climent A (2007) Estudio de amenazas naturales y antrópicas en la cuenca del río Pirrís: Sismología y tectónica. ICE Internal Report 20.
  • 3. Beck JL (1976) Weight-induced stresses and the recent seismicity at lake Oroville, California. Bull Seism Soc Am 66:1121–1131. https://doi.org/10.1785/BSSA0660041121
  • 4. Bell ML, Nur A (1978) Strength changes due to reservoir-induced pore pressure and stresses and application to lake Oroville. J Geophys Res 83:4469. https://doi.org/10.1029/JB083iB09p04469
  • 5. Cocco M, Rice JR (2002) Pore pressure and poroelasticity effects in coulomb stress analysis of earthquake interactions. J Geophys Res. https://doi.org/10.1029/2000JB000138
  • 6. Deng K, Zhou S, Wang R, Robinson R, Zhao C, Cheng W (2010) Evidence that the 2008 Mw 7.9 Wenchuan earthquake could not have been induced by the Zipingpu reservoir. Bull Seism Soc Am 100:2805–2814. https://doi.org/10.1785/0120090222
  • 7. Dieterich JH (1994) A constitutive law for rate of earthquake production and its applications to earthquake clustering. J Geophys Res 99:2601–2618. https://doi.org/10.1029/93JB02581
  • 8. Foulger GR, Wilkinson MW, Wilson MP, Gluyas JG (2022) Human-Induced Earthquakes: The Performance of Questionnaire Schemes. Bull Seism Soc Am 112(6):2773–2794. https://doi.org/10.1785/0120220079
  • 9. Freed A (2005) Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu Rev Earth Planet Sci 84(3):668–691. https://doi.org/10.1146/annurev.earth.33.092203.122505
  • 10. Gough DI, Gough WI (1970) Load-induced earthquakes at lake Kariba-II. Geophys J Int 21:79–101. https://doi.org/10.1111/j.1365-246X.1970.tb01768.x
  • 11. Gupta HK (2002) A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna. India Earth-Sci Rev 58(3–4):279–310. https://doi.org/10.1016/S0012-8252(02)00063-6
  • 12. Gupta HK, Rastogi BK, Narain H (1972a) Common features of the reservoir associated seismic activities. Bull Seism Soc Am 62:481–492. https://doi.org/10.1785/BSSA0620020481
  • 13. Gupta HK, Rastogi BK, Narain H (1972b) Some discriminatory characteristics of earthquakes near the Kariba, Kremasta and Koyna artificial lakes. Bull Seism Soc Am 62:493–507. https://doi.org/10.1785/BSSA0620020493
  • 14. Harris R (1998) Introduction to special section: stress triggers, stress shadows, and implications for seismic hazards. J Geophys Res 103:24347–24358. https://doi.org/10.1029/98JB01576
  • 15. Hill DP, Reasenberg PA et al (1993) Seismicity remotely triggered by the magnitude 7.3 landers, california, earthquake. Science 260:1617–1623. https://doi.org/10.1126/science.260.5114.1617
  • 16. Jaeger JC, Cook NGW (1969) Fundamentals of rock mechanics. Methuen Co., Ltd, London
  • 17. Kalpna CR (2000) Green’s function based stress diffusion solutions in the porous elastic half space for time varying finite reservoir loads. Phys Earth Planet Inter 120:93–101. https://doi.org/10.1016/S0031-9201(00)00146-1
  • 18. Lei X (2011) Possible roles of the Zipingpu Reservoir in triggering the 2008 Wenchuan earthquake. J Asian Earth Sci 40:844–854. https://doi.org/10.1016/j.jseaes.2010.05.004
  • 19. Luzón F, García-Jerez A, Santoyo MA, Sánchez-Sesma FJ (2010) Numerical modelling of pore pressure variations due to time varying loads using a hybrid technique: the case of the Itoiz reservoir (Northern Spain). Geophys J Int 180(1):327–338. https://doi.org/10.1111/j.1365-246X.2009.04408.x
  • 20. Mikumo T, Yagi Y, Singh SK, Santoyo MA (2002) Coseismic and postseismic stress changes in a subducting plate: Possible stress interactions between large interplate thrust and intraplate normal-faulting earthquakes. J Geophys Res: Solid Earth 107(B1):ESE-5. https://doi.org/10.1029/2001JB000446
  • 21. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 75(4):1135–1154. https://doi.org/10.1785/BSSA0750041135
  • 22. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 82(2):1018–1040. https://doi.org/10.1785/BSSA0820021018
  • 23. Parsons T (2005) Significance of stress transfer in time-dependent earthquake probability calculations. J Geophys Res 110:B05S02. https://doi.org/10.1029/2004JB003190
  • 24. Qiu X, Fenton C (2014) Factors controlling the occurrence of reservoir-induced seismicity. Lollino et al. (eds.), Eng Geol Soc and Terr – Vol 6, https://doi.org/10.1007/978-3-319-09060-3_102
  • 25. Rice JR, Cleary PC (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys 14(2):227–242. https://doi.org/10.1029/RG014i002p00227
  • 26. Roeloffs EA (1988) Fault stability changes induced beneath a reservoir with cyclic variations in water level. J Geophys Res 93:2107–2124. https://doi.org/10.1029/JB093iB03p02107
  • 27. Ruiz-Barajas S, Santoyo MA, Benito-Oterino B, Alvarado GE, Climent A (2019) Stress transfer patterns and local seismicity related to reservoir water-level variations a case study in central Costa Rica. Sci Reports. https://doi.org/10.1038/s41598-019-41890-y
  • 28. Santoyo MA, Singh SK, Mikumo T, Ordaz M (2005) Space-time clustering of large thrust earthquakes along the Mexican subduction zone: An evidence of source stress interaction. Bull Seis Soc Am 95(5):1856–1864. https://doi.org/10.1785/0120040185
  • 29. Santoyo MA, García-Jerez A, Luzón F (2010) A subsurface stress analysis and its possible relation with the seismicity near the Itoiz reservoir, Navarra, Northern Spain. Tectonophysics 482:205–215. https://doi.org/10.1016/j.tecto.2009.06.022
  • 30. Santoyo MA, Martínez-Garzón P, García-Jerez A, Luzón F (2016) Surface dynamic deformation estimates from local seismicity: the Itoiz reservoir, Spain. J Seismol 20:1021–1039. https://doi.org/10.1007/s10950-016-9578-4
  • 31. Simpson DW, Leith WS, Scholz CH (1988) Two types of reservoir-induced seismicity. Bull Seism Soc Am 78(6):2025–2040. https://doi.org/10.1785/BSSA0780062025
  • 32. Stein RS (1999) The role of stress transfer in earthquake occurrence. Nature 402:605–609. https://doi.org/10.1038/45144
  • 33. Thingbaijam KKS, Mai PM, Goda K (2017) New empirical earthquake source-scaling laws. Bull Seism Soc Am 107(5):2225–2246. https://doi.org/10.1785/0120170017
  • 34. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and Surface displacement. Bull Seism Soc Am 84(4):974–1002. https://doi.org/10.1785/BSSA0840040974
  • 35. Wilson MP, Foulger GR, Gluyas RJ, Davies RJ, Julian BR (2017) Hiquake: the human-induced earthquake database. Seismol Res Lett 88(6):1560–1565. https://doi.org/10.1785/0220170112
  • 36. Zhang H, Thurber C, Bedrosian B (2009) Joint inversion of Vp, Vs, and Vp/Vs at SAFOD, Parkfield. California Geochem Geophys Geosystems 10(11):Q11002. https://doi.org/10.1029/2009GC002709
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0083517f-9908-414e-9847-e9d5ef3f2ea9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.