PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolutionary computing approaches to optimum design of fuzzy logic controller for a flexible robot system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the design of a Fuzzy Logic Controller (FLC) whose parameters are optimized by using Genetic Algorithm (GA) and Bacteria Foraging Optimization (BFO) for tip position control of a single link flexible manipulator. The proposed FLC is designed by minimizing the fitness function, which is defined as a function of tip position error, through GA and BFO optimization algorithms achieving perfect tip position tracking of the single link flexible manipulator. Then the tip position responses obtained by using both the above controllers are compared to suggest the best controller for the tip position tracking.
Rocznik
Strony
395--412
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wzory
Twórcy
autor
  • Department of Electrical Engineering, National Institute of Technology, Rourkela- 769008, India
autor
  • Department of Electrical Engineering, National Institute of Technology, Rourkela- 769008, India
Bibliografia
  • [1] H. B. Gürocak: A genetic-algorithm-based method for tuning fuzzy logic controllers. Fuzzy Sets and Systems, 108 (1999), 39-47.
  • [2] M. O. Tokhi and A. K. M. Azad: Modeling of a single-link flexible manipulator system: theoretical and practical investigations. Robotica, 14 (1996), 91-102.
  • [3] V. G. Moudgal, W. A. Kwong, K. M. Passino and S. Yurkovich: Fuzzy learning control for a flexible-link robot. IEEE Trans. on Fuzzy Systems, 3(2), (1995), 199-210.
  • [4] C. Larbes, S. M. Aït Cheikh, T. Obeidi and A. Zerguerras: Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renewable Energy, 34 (2009), 2093-2100.
  • [5] S. S. Ge, T. H. Lee and G. Zhu: Genetic algorithm tuning of Lyapunov-based controllers: An application to a single-link flexible robot system. IEEE Trans. on Industrial Electronics, 43(5), (1996), 567-574.
  • [6] K. M. Passino: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine, 22(3), (2002), pp. 52-67.
  • [7] S. Das, A. Biswas, S. Dasgupta and A. Abraham: Bacterial foraging optimization algorithm: Theoretical foundations, analysis, and applications. Foundations of Computational Intelligence, 3 ser. Studies in Computational Intelligence, A. Abraham, A.E. Hassanien, P. Siarry and A. Engelbrecht, (Eds). Springer Berlin Heidelberg, 203 (2009), 23-55.
  • [8] B. Subudhi, A. K. Swain and N. Ahmad: A genetic fuzzy adaptive controller for liquid level control system. Archives of Control Sciences, 5(3-4), (1996), 297-310.
  • [9] P. K. Ray and B. Subudhi: BFO optimized RLS algorithm for power system harmonics estimation. Applied Soft Computing, v12 (2012), 1965-1977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0081b911-869e-4ca7-9171-967610212956
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.