

MATEUSZ KAŁUŻA Politechnika Ślaska mateusz.kaluza@polsl.pl ORCID: 0000-0002-9761-9066

MIROSŁAW KOTASIŃSKI Politechnika Ślaska miroslaw.kotasinski@polsl.pl ORCID: 0000-0002-5588-0741

JOANNA BZÓWKA

Politechnika Ślaska joanna.bzowka@polsl.pl ORCID: 0000-0002-1765-7354

PAWEŁ DRONSZCZYK Politechnika Śląska pawedro390@student.polsl.pl

downictwie drogowym do wzmacniania oraz separacji warstw nawierzchni jako powszechne, sprawdzone rozwiązanie [2] [5] [10]. Stosowanie wzmocnienia w formie pojedynczej warstwy siatki z włókna szklanego w spodzie warstw z betonu asfaltowego jest rozwiązaniem chetnie wykorzystywanym przez zarządców dróg [7] [8] [10]. Problematyka właściwej lokalizacji wzmocnienia geosyntetycznego, pomimo wielu lat praktyki oraz badań, nadal pozostaje aktualna, szczególnie w kontekście obszarów występowania oddziaływań górniczych. Analizowany odcinek drogi został poddany ocenie obejmującej

a następnie Т

oddziaływań górniczych uzyskanych z zakładu górniczego stwierdzono, że pomierzone obniżenia terenu w latach 2008÷2018 wyniosły do 30 cm. Aktualnie teren nie podlega dalszym obniżeniom.

na zależności pomiędzy wybranymi wskaźnikami czaszy ugięć a modułami warstw konstrukcji z obliczeń odwrotnych

Wpływ siatki z włókna szklanego

Geosyntetyki są stosowane w buokreślenie stanu spękań i ugięć,

wyznaczeniu parametrów czaszy ugięć [6]. Jest to droga klasy Z, kategorii ruchu KR3, podlegająca wpływom eksploatacji górniczej, które zakwalifikowano do kategorii szkód górniczych. Na podstawie map wpływów

Materiały i metodyka badań

W celu rozpoznania podłoża oraz konstrukcji nawierzchni wykonano trzy odwierty do głębokości 4,0 m. Układ warstw nawierzchni analizowanej drogi przedstawia się następująco :

- 1) pakiet warstw z betonu asfaltowego 11÷12 cm,
- 2) podbudowa stabilizowana mechanicznie z kruszywa łamanego - 12÷15 cm,
- 3) grunt stabilizowany spoiwem hydraulicznym 25 cm,
- 4) nasyp (piasek drobny, tłuczeń) 60 cm.

Podłoże gruntowe pod nasypem wykazuje zróżnicowanie, od piasków drobnych zaglinionych (Pd+G) w stanie średniozagęszczonym, poprzez gliny pylaste szaro-brązowe (G π) w stanie twardoplastycznym oraz pyły piaszczyste przewarstwione piaskiem drobnym ($\pi p/Pd$) w stanie średniozagęszczonym. Na potrzeby analiz podłoże gruntowe poniżej nasypu ujednolicono w jednorodną warstwę. Wartości wtórnych modułów odkształcenia E₂ dla warstw podłoża wynoszą od 43÷70 MPa. Wykorzystano wyniki pomiarów przemieszczeń pionowych określonych za pomocą

Rys. 1. Schemat aparatu FWD wraz z czaszą ugięć oraz parametrami czaszy ugięć przypisanymi do warstw, których stan określają, gdzie H1, H2 i E1, E2, E3 oznaczają odpowiednio: grubości poszczególnych warstw i moduły sztywności/sprężystości tych warstw

ugięciomierza FWD (ang. *Falling Weight Deflectometer*), którego schemat, wraz z wyznaczaną czaszą ugięć, przedstawiono na rysunku 1.

Badanie metodą FWD polega na pomiarze ugięcia nawierzchni pod przyłożonym obciążeniem dynamicznym o wartości siły 50 kN, za pomocą geofonów rozmieszczonych w następujących odległościach: $d_1 = 0,00$ m, $d_2 = 0,20$ m, $d_3 = 0,30$ m, $d_4 = 0,60$ m, $d_5 = 0,90$ m, $d_6 = 1,20$ m, $d_7 = 1,50$ m, $d_8 = 1,80$ m, $d_9 = 2,10$ m. Ugięcia mierzono na trzech odcinkach 100-metrowych, odrębnie dla pasa ruchu wzmocnionego i niewzmocnionego siatką z włókna szklanego, pokazanych na rysunku 2.

Pomiary prowadzono w śladzie prawego koła, co 25 m, na każdym pasie ruchu. Badania przeprowadzono w drugiej połowie sierpnia 2019 roku oraz we wrześniu 2021 roku. Nie wyznaczano odcinków jednorodnych metodą sum skumu-

Tabela	1. Zestawienie wartości modułów warstw nawierzchni z wskaźnikami krz	zvwizny (czaszv	uai	eć
		· , · · · · · , ·	,		τ-

PAS NIEWZMOCNIONY								PAS	WZMO	CNION	Y					
Kilometraż	E1	E2	Esub	BLI	MLI	LLI	RoC	Kilometraż	E1	E ₂	Esub	BLI	MLI	LLI	RoC	
	[MPa]	[MPa]	[MPa]	[µm]	[µm]	[µm]	[µm]	KIIOIIICU AZ	[MPa]	[MPa]	[MPa]	[µm]	[µm]	[µm]	[µm]	
Pomiar z roku 2019																
Odcinek 1																
0+000	880	216	61	282	205	107	107	0+005	2245	312	177	318	155	76	93	
0+020	1883	167	52	247	182	90	129	0+025	1844	203	80	217	138	67	147	
0+045	1554	162	82	193	110	41	160	0+050	2150	195	231	158	87	36	193	
0+070	1227	248	55	254	150	74	116	0+075	1990	233	107	197	118	51	160	
0+095	3444	271	58	146	115	67	236	0+100	1761	318	52	190	125	67	161	
Odcinek 2																
0+120	869	153	138	242	125	52	133	0+125	1140	297	33	178	138	81	152	
0+145	1050	130	28	247	208	113	131	0+150	957	147	45	245	174	91	129	
0+170	1881	174	39	149	141	86	225	0+175	1178	168	48	200	152	85	155	
0+195	691	118	38	332	207	119	97	0+200	558	108	36	266	246	125	141	
							0	dcinek 3	-							
0+220	1406	145	50	306	204	100	105	0+225	2340	221	66	182	152	56	163	
0+245	2069	153	81	236	165	75	140	0+250	2038	189	49	222	171	88	138	
0+270	2351	108	147	240	163	70	147	0+275	1573	229	63	233	145	78	135	
0+275	1638	219	63	268	166	64	119	0+300	1649	271	53	221	132	63	148	
Pomiar z roku 2021																
							0	dcinek 1								
0+010	3000	104	86	156	148	85	231	0+025	1944	189	68	240	169	76	126	
0+034	2967	117	57	229	203	95	156	0+050	2997	113	82	228	191	90	161	
0+060	2350	194	118	207	138	58	159	0+076	4812	154	103	156	142	67	226	
0+085	2126	171	60	251	171	87	145	0+100	3108	219	87	179	130	67	179	
Odcinek 2																
0+110	2053	105	72	165	151	92	211	0+125	1075	207	74	212	134	61	151	
0+135	1137	209	88	203	127	61	149	0+150	1471	203	33	177	159	92	188	
0+159	1523	166	38	184	162	97	182	0+175	1625	162	34	180	167	105	182	
0+185	1208	170	45	206	170	86	167	0+200	1550	108	45	200	186	110	175	
Odcinek 3																
0+215	2653	104	31	279	250	137	124	0+225	3282	107	42	240	208	127	142	
0+239	3052	123	52	233	192	107	147	0+251	6775	239	70	111	106	66	306	
0+265	3443	126	88	207	171	86	165	0+275	3905	239	57	152	126	77	221	
0+290	2897	132	64	222	189	92	157	0+300	2312	231	63	196	149	75	152	

lowanych. Dla uzyskanych danych określono następujące wskaźniki:

 BLI (ang. Base Layer Index nazywany również Surface Curvature Index SCI – wskaźnik krzywizny linii ugięć na powierzchni warstwy):

$$\mathsf{BLI} = D_0 - D_{300} \tag{1}$$

gdzie:

 D_0 – ugięcie maksymalne [μ m],

Rys. 3. Porównanie promienia krzywizny (RoC) z modułem sztywności warstw mineralno-asfaltowych (E₁) dla pomiaru z 2019 roku

Rys. 4. Porównanie wskaźnika krzywizny powierzchni (BLI) z modułem sztywności warstw mineralno-asfaltowych (E_1) dla pomiaru z 2019 roku

D₃₀₀ – wartość ugięcia sprężystego w odległości 300 mm od przyłożonego obciążenia [μm].

 MLI (ang. Middle Layer Index nazywany również Base Curvature Index BCI – wskaźnik krzywizny ugięć na podbudowie):

$$MLI = D_{300} - D_{600} \tag{2}$$

gdzie:

- D₆₀₀ wartość ugięcia sprężystego w odległości 600 mm od przyłożonego obciążenia [μm].
 - LLI (ang. Lower Layer Index nazywany również Base Damage Index BDI – wskaźnik uszkodzenia podbudowy):

$$LLI = D_{600} - D_{900} \quad (3)$$

gdzie: D_{900} – wartość ugięcia sprężystego w odległości 900 mm od przyłożonego obciążenia [μ m].

 RoC (ang. Radius of Curvature – promień krzywizny opisujący stan podbudowy i warstwy ścieralnej):

 $\operatorname{RoC} =$ (4)

$$=\frac{L^{2}}{2D_{0}\left(1-\frac{D_{200}}{D_{0}}\right)}$$

gdzie:

L = 200 mm, D_{200} – wartość ugięcia sprężystego w odległości 200 mm od przyłożonego obciążenia [µm].

Przyjęte do analiz wskaźniki krzywizn korelują z występującymi w spodzie warstw asfaltowych odkształceniami [1] [3] [9]. Są one istotne z punktu widzenia kryteriów zmęczeniowych, a tym samym trwałości nawierzchni, dzięki czemu pozwalają wiarygodnie ocenić nośność nawierzchni drogi. Są również źródłem interesujących danych do analizy, w przypadku określania wpływu zastosowanego na poligonie badawczym wzmocnienia geosyntetycznego. W niniejszej pracy wskaźniki te zostały zestawione z modułami warstw nawierzchni uzyskanymi z obliczeń odwrotnych, dla pomiarów z roku 2019 oraz 2021.

W kolejnym kroku, na podstawie pomierzonych ugięć nawierzchni, wyznaczono moduły sztywności warstw nawierzchni oraz moduł sprężystości podłoża i podbudowy tłuczniowej, wykorzystując metodę obliczeń odwrotnych za pomocą oproodwrotnych przyjęto wartość współczynnika Poissona v=0,3 dla każdej z analizowanych warstw. Zasadniczy wpływ na kształt czaszy ma wartość modułu sprężystości podłoża gruntowego, przesuwając całą czaszę w górę, gdy wartość modułu rośnie, lub w dół, gdy wartość modułu sprężystości maleje. W przypadku występowania w konstrukcji nawierzchni warstwy związanej spoiwem hydraulicznym, w fazie pracy po spękaniu, gdy bloki materiału są większe niż talerz aparatu FWD (tj. 30 cm średnicy), powinno się

gramowania ELMOD. Należy zaznaczyć, że zastosowana metodologia wykorzystuje dane uzyskane z pomiaru dynamicznego do identyfikacji parametrów w modelu statycznym, co w dalszym etapie badań może powodować pewne niedokładności. Wartość ugięć w całej czaszy jest zależnością opisaną wzorem (5) [4]:

$$U_i = f(h, E, v) \tag{5}$$

gdzie:

- U_i wartość ugięcia badanej powierzchni w punkcie *i* [μm],
- f zależność funkcyjna czynników składowych,
- h grubość poszczególnych warstw konstrukcyjnych nawierzchni [mm],
- E moduł sztywności/spreżystości poszczególnych warstw konstrukcyjnych nawierzchni oraz podłoża [MPa],
- v współczynnik
 Poissona warstw
 konstrukcyjnych
 [–].

Na rozkład czaszy ugięć badanej nawierzchni wpływają zmiany: grubości warstw konstrukcji, sztywności oraz w niewielkim stopniu współczynnika Poissona. Do obliczeń

Rys. 5. Porównanie wskaźnika krzywizny podbudowy (MLI) z modułem sprężystości podbudowy zasadniczej (E_2) dla pomiaru z 2019 roku

Rys. 6. Porównanie wskaźnika uszkodzenia podbudowy (LLI) z modułem sprężystości podłoża (Esub) dla pomiaru z 2019 roku

przyjmować model dwuwarstwowy. Ponieważ na obszarze objętym analizą w ciągu ostatnich 10 lat zaobserwowano osiadania terenu o wartościach dochodzących do 30 cm, można stwierdzić z bardzo dużą pewnością, że stabilizacja podłoża cementem nie stanowi już jednorodnej warstwy, która powinna być traktowana jako warstwa sztywna. W związku z tym do obliczeń przyjęto dwa modele obliczeniowe, pierwszy dla odcinków 1,3 oraz drugi dla odcinka nr 2. Pomiędzy odcinkami dokonano rozróżnienia w grubości pakietu asfaltowego, zgodnie z przeprowadzonymi odwiertami. (tab. 1). Do poszukiwania zależności pomiędzy tymi danymi wykorzystano potęgową linię trendu. Rosnące wartości RoC wskazują na lepszy stan techniczny warstwy, odwrotnie w przypadku BLI, kiedy lepszy stan techniczny jest wskazywany przez wartości niższe. Logiczne wydaje się, że wraz z wyższymi modułami sztywności MMA będą rosły wartości RoC oraz malały wartości BLI. Z uwagi na stosunkowo małą liczbę punktów pomiarowych oraz na specyfikę porównywanych danych, badania należy traktować jako wstępne. W obserwacjach ograniczono się do określenia czy trend

Modele nawierzchni dla poszczególnych odcinków przedstawiają się następująco:

- Odcinek 1 od km 0 + 000 do km 0 + 100: 11 cm pakiet warstw z betonu asfaltowego, 15 cm podbudowa tłuczniowa, 25 cm stabilizacja cementem, podłoże gruntowe;
- Odcinek 2 od km 0 + 100 do km 0 + 200: 17 cm pakiet warstw z betonu asfaltowego, 15 cm podbudowa tłuczniowa, 25 cm stabilizacja cementem, podłoże gruntowe;
- Odcinek 3 od km 0 + 200 do km 0 + 300: 11 cm pakiet warstw z betonu asfaltowego, 15 cm podbudowa tłuczniowa, 25 cm stabilizacja cementem, podłoże gruntowe.

Wyniki

W pierwszej kolejności porównano wartości wskaźników krzywizn czaszy ugięć, opisujące stan górnych warstw nawierzchni (RoC oraz BLI), z wartościami modułów sztywności mieszanek mineralno--asfaltowych (MMA) uzyskanych z obliczeń odwrotnych, z podziałem na pas wzmocniony oraz niewzmocniony

Rys. 7. Porównanie promienia krzywizny (RoC) z modułem sztywności warstw mineralno-asfaltowych (E_1) dla pomiaru z 2021 roku

Rys. 9. Porównanie wskaźnika krzywizny podbudowy (MLI) z modułem sprężystości podbudowy zasadniczej (E2) dla pomiaru z 2021 roku

Rys. 10. Porównanie wskaźnika uszkodzenia podbudowy (LLI) z modułem sprężystości podłoża (Esub) dla pomiaru z 2021 roku

wskazujący na występowanie zależności ma miejsce, czy też nie.

Na rysunkach 3 oraz 4 można zauważyć występowanie pewnej zgodności dla danych uzyskanych z badań pasa niewzmocnionego ($R^2 = 0.46 \div 0.52$). W przypadku pasa wzmocnionego nie zaobserwowano zależności pomiędzy uzyskanymi wartościami, co jest zjawiskiem zaskakującym.

W przypadku analiz warstw znajdujących się poniżej po-

z roku 2021 posłużył do ponownego przeprowadzenia powyższych analiz. O ile dla wartości promienia krzywizny RoC, pokazanych na rysunku 7, ponownie obserwujemy wystąpienie zależności dla pasa wzmocnionego ($R^2 = 0,51$), to w przypadku wskaźnika krzywizny powierzchni BLI, widocznym na rysunku 8, taka zgodność nie zachodzi ($R^2 = 0,007$ wobec $R^2 = 0,47$ dla danych zmierzonych w roku 2019).

"Drogownictwo" 11-12/2022

ziomu nawierzchni asfaltowej należy wskazać, że dla MLI oraz LLI trend obrazujący stan techniczny warstwy jest analogiczny jak dla BLI, tj. mniejsze wartości wskazują na lepszy stan ocenianej warstwy. Dla wskaźnika krzywizny podbudowy MLI zestawionego z modułami sprężystości podbudowy zasadniczej, pokazana na rysunku 5 sytuacja jest odmienna. Obserwujemy pewną zależność pomiedzy wartościami dla pasa wzmocnionego ($R^2 =$ 0,47), natomiast brak zależności dla nawierzchni niewzmocnionej ($R^2 = 0,14$). Jest to sytuacja odwrotna do obserwowanej na rysunkach 3 oraz 4, co jest ciekawym zjawiskiem z perspektywy wykorzystywania wskaźników krzywizny czaszy ugieć do oceny stanu technicznego nawierzchni z zabudowanym wzmocnieniem.

W przypadku warstw podłoża, których moduły sprężystości zestawiono ze wskaźnikiem uszkodzenia podbudowy LLI, na rysunku 6, zależności pomiędzy wartościami zachodzą zarówno dla pasa wzmocnionego, jak i niewzmocnionego ($R^2 = 0,48 \div 0,53$).

Pomiar ugięć

416

W przypadku warstw podbudowy zasadniczej oraz podłoża gruntowego, trend zaobserwowany w analizie danych z roku 2019 został zachowany, co widać na rysunkach 9 oraz 10. Zależności wskaźnika krzywizny podbudowy MLI dla modułów sprężystości podbudowy zasadniczej występują dla nawierzchni wzmocnionej; zgodność funkcji trendu w tym przypadku wynosi $R^2 = 0.75$, natomiast dla pasa niewzmocnionego zależność możemy określić jako słabą ($R^2 = 0.29$). W przypadku warstw podłoża, których moduły sprężystości zestawiono ze wskaźnikiem uszkodzenia podbudowy LLI na rysunku 10, zależności pomiędzy wartościami zachodzą zarówno dla pasa wzmocnionego, jak i niewzmocnionego ($R^2 = 0.52 \div 0.69$).

Zdecydowanie lepsze dopasowanie funkcji otrzymujemy dla pasa wzmocnionego; takiej różnicy nie zaobserwowano w danych z 2019 roku, gdzie najwyższy współczynnik determinacji wynosi $R^2 = 0.53$.

Podsumowanie

Wyznaczenie wartości wskaźników krzywizn czaszy ugięć pozwoliło na doprecyzowanie stanu technicznego warstw konstrukcji nawierzchni, tj. warstw wierzchnich, podbudowy zasadniczej i podbudowy pomocniczej z podłożem gruntowym. Wartości RoC wskazują na dobry stan techniczny górnych warstw nawierzchni. W przypadku pomiarów wykonanych w 2019 roku, wartości promienia krzywizny (RoC) są wyższe dla odcinków wzmocnionych nr 1 oraz nr 3. Na odcinku 2 obserwujemy zmianę trendu, jednak jest to jednocześnie najbardziej zniszczony odcinek drogi. Pomiar z 2021 roku potwierdził wcześniejsze obserwacje, jednak dla odcinka nr 3 widzimy wyraźnie wyższe wartości aniżeli w 2019 roku. Poza pojedynczymi pomiarami stan techniczny warstw asfaltowych, określony na podstawie RoC, można przyjąć jako dobry.

Pozostałe wartości wskaźników krzywizn (LLI, MLI, BLI) wskazują na zły stan techniczny dolnych warstw konstrukcji nawierzchni. Zastosowane wzmocnienie w spodzie warstw z betonu asfaltowego wskazuje na korzystny wpływ na stan techniczny pakietu asfaltowego, bez wyraźnego wpływu na stan pozostałych warstw nawierzchni.

Zaobserwowano zależności pomiędzy obliczonymi wskaźnikami czaszy ugięć a modułami warstw nawierzchni, uzyskanymi z obliczeń odwrotnych. Z uwagi na stosunkowo małą liczbę punktów pomiarowych oraz na specyfikę porównywanych danych, prowadzone obserwacje należy traktować jako wstępne. W przypadku promienia krzywizny obserwujemy występowanie zależności z wartościami modułów sztywności uzyskanymi z obliczeń odwrotnych dla danych z pomiarów, zarówno w roku 2019, jak i w 2021 dla pasa niewzmocnionego ($R^2 = 0,51$). Niestety analizy dotyczące wskaźnika krzywizny powierzchni BLI nie ujawniły powtarzalności ($R^2 = 0,007$ w roku 2021 wobec $R^2 = 0,47$ dla danych z roku 2019). Dla pasa wzmocnionego zależności nie wystąpiły dla żadnego z analizowanych pomiarów. Trend uzyskany podczas analizy wskaźnika krzywizny podbudowy i wartości modułu sprężystości podbudowy zasadniczej jest odwrotny niż w przypadku warstw asfaltowych. Pas wzmocniony wykazuje, że zachodzą zależności zarówno dla pomiaru z roku 2019 ($R^2 = 0.47$), jak i z roku 2021 ($R^2 = 0.75$), przy braku silnej zależności na pasie niewzmocnionym. W przypadku warstw podłoża, których moduły sprężystości zestawiono ze wskaźnikiem uszkodzenia podbudowy LLI, zależności pomiędzy wartościami zachodzą zarówno dla pasa wzmocnionego, jak i niewzmocnionego ($R^2 = 0.52 \div 0.69$).

Stan techniczny analizowanych dróg może mieć znaczący wpływ na uzyskane wyniki, jednak zaobserwowano powtarzalne zależności występujące w przypadku poligonu badawczego, które pokazują wpływ zabudowanego zbrojenia na uzyskiwane wyniki [6]. Wartości wskaźników czaszy ugięć wskazują na wpływ wzmocnienia na stan górnych warstw nawierzchni. Zakładając, że udział wpływów górniczych w procesie destrukcji nawierzchni był niewielki, to rozwiązanie wzmocnienia w postaci pojedynczej przekładki geosyntetycznej w spodzie warstw z betonu asfaltowego, w dalszym ciągu pozostaje dla analizowanego poligonu umiarkowanie trafne.

Bibliografia

- Baltzer Susanne, Hilderbrand Gregers. HSD Measurements at the BAST Test Track. – COST 354: Short Term Scientific Mission, 2006.
- [2] Chlipalski Krzysztof, Grygierek Marcin, Kawalec Jacek. Komunikacyjne obiekty liniowe na terenach górniczych. Magazyn Autostrady. 2015, nr 3, 24–31.
- [3] Eijbersen Jacomien, Van Zwieten Joost. Application of FWD Measurements at the Network Level, 1, 438–450, 4th International Conference on Managing Pavements, Pretoria, South Africa, 1998.
- [4] Graczyk Mirosław. Nośność konstrukcji nawierzchni wielowarstwowych w krajowych warunkach klimatycznych. IBDiM, Warszawa, 2010.
- [5] Grygierek Marcin, Kawalec Jacek, Koda Eugeniusz, Osiński Piotr. Lessons learned on geosyntetics applications in road structures in Silesia mining region in Poland. Applied Sciences, 2019, vol. 9. DOI 10.3390/app9061122
- [6] Kałuża Mateusz, Kotasiński Mirosław, Bzówka Joanna. Wpływ wzmocnienia nawierzchni siatką z włókna szklanego na wybrane wskaźniki krzywej ugięć nawierzchni. "Drogownictwo" 2022, nr 5, 135–140.
- [7] Kłosek Kazimierz. Prevention of damage to highways and railroads in mining area. In: International land reclamation and mine drainage conference Pittsburgh, US Department of the Interior, 1994. 101–110.
- [8] Kłosek Kazimierz, Ajdukiewicz Jacek. Efektywność stosowania geosyntetyków w budownictwie komunikacyjnym. W: Szkoła metod projektowania obiektów inżynierskich z zastosowaniem geotekstyliów. Ustroń, 2004.
- [9] Pożarycki Andrzej, Górnaś Przemysław, Bilski Marcin, Turkot Adam. Parametryzacja krzywej ugięć nawierzchni podatnych. "Drogownictwo" 2019, nr 3, 67–73.
- [10] Rosikoń Antoni. Budownictwo komunikacyjne na terenach objętych szkodami górniczymi. Warszawa: Wydawnictwa Komunikacji i Łączności, 1979.